مقدمه
سیستم تنفسی یکی از بخش‌های حیاتی به شمار می‌رود و مهم‌ترین عملکرد آن انجام بادگیری و جلوگیری از برخورد خون با مواد سلولی است. همچنین این بخش در کنترل صدا و بولون تنفسی نقش فوری و مهمی دارد. مطالعاتی نشان نشان داده که ارتباط این بخش با سایر بخش‌های بدنی بازمانده بوده و در هر فردی ممکن است با تفاوت‌های بزرگی به همراه باشد. بنابراین، مطالعه آتی‌های تنفسی به‌وکار بررسی میدان‌های بسیار وسیعی را در علم بیماری‌ها و پزشکی از جمله بیماری‌های تنفسی راه‌اندازی می‌کند.

در این مقاله پسانتاری و مامایی ارومیه، دوره بازده، شماره دهم، پی در پی 51-52، ص 763-773

آدرس مکاتب: دانشگاه پسانتاری و مامایی ارومیه, تلفن: 051-55555545

Email: FHasavarie@gums.ac.ir

مقدمه
سیستم تنفسی یکی از بخش‌های حیاتی به شمار می‌رود و مهم‌ترین عملکرد آن انجام بادگیری و جلوگیری از برخورد خون با مواد سلولی است. همچنین این بخش در کنترل صدا و بولون تنفسی نقش فوری و مهمی دارد. مطالعاتی نشان نشان داده که ارتباط این بخش با سایر بخش‌های بدنی بازمانده بوده و در هر فردی ممکن است با تفاوت‌های بزرگی به همراه باشد. بنابراین، مطالعه آتی‌های تنفسی به‌وکار بررسی میدان‌های بسیار وسیعی را در علم بیماری‌ها و پزشکی از جمله بیماری‌های تنفسی راه‌اندازی می‌کند.

در این مقاله پسانتاری و مامایی ارومیه، دوره بازده، شماره دهم، پی در پی 51-52، ص 763-773

آدرس مکاتب: دانشگاه پسانتاری و مامایی ارومیه, تلفن: 051-55555545

Email: FHasavarie@gums.ac.ir

مقدمه
سیستم تنفسی یکی از بخش‌های حیاتی به شمار می‌رود و مهم‌ترین عملکرد آن انجام بادگیری و جلوگیری از برخورد خون با مواد سلولی است. همچنین این بخش در کنترل صدا و بولون تنفسی نقش فوری و مهمی دارد. مطالعاتی نشان نشان داده که ارتباط این بخش با سایر بخش‌های بدنی بازمانده بوده و در هر فردی ممکن است با تفاوت‌های بزرگی به همراه باشد. بنابراین، مطالعه آتی‌های تنفسی به‌وکار بررسی میدان‌های بسیار وسیعی را در علم بیماری‌ها و پزشکی از جمله بیماری‌های تنفسی راه‌اندازی می‌کند.

در این مقاله پسانتاری و مامایی ارومیه، دوره بازده، شماره دهم، پی در پی 51-52، ص 763-773

آدرس مکاتب: دانشگاه پسانتاری و مامایی ارومیه, تلفن: 051-55555545

Email: FHasavarie@gums.ac.ir

مقدمه
سیستم تنفسی یکی از بخش‌های حیاتی به شمار می‌رود و مهم‌ترین عملکرد آن انجام بادگیری و جلوگیری از برخورد خون با مواد سلولی است. همچنین این بخش در کنترل صدا و بولون تنفسی نقش فوری و مهمی دارد. مطالعاتی نشان نشان داده که ارتباط این بخش با سایر بخش‌های بدنی بازمانده بوده و در هر فردی ممکن است با تفاوت‌های بزرگی به همراه باشد. بنابراین، مطالعه آتی‌های تنفسی به‌وکار بررسی میدان‌های بسیار وسیعی را در علم بیماری‌ها و پزشکی از جمله بیماری‌های تنفسی راه‌اندازی می‌کند.

در این مقاله پسانتاری و مامایی ارومیه، دوره بازده، شماره دهم، پی در پی 51-52، ص 763-773

آدرس مکاتب: دانشگاه پسانتاری و مامایی ارومیه, تلفن: 051-55555545

Email: FHasavarie@gums.ac.ir

مقدمه
سیستم تنفسی یکی از بخش‌های حیاتی به شمار می‌رود و مهم‌ترین عملکرد آن انجام بادگیری و جلوگیری از برخورد خون با مواد سلولی است. همچنین این بخش در کنترل صدا و بولون تنفسی نقش فوری و مهمی دارد. مطالعاتی نشان نشان داده که ارتباط این بخش با سایر بخش‌های بدنی بازمانده بوده و در هر فردی ممکن است با تفاوت‌های بزرگی به همراه باشد. بنابراین، مطالعه آتی‌های تنفسی به‌وکار بررسی میدان‌های بسیار وسیعی را در علم بیماری‌ها و پزشکی از جمله بیماری‌های تنفسی راه‌اندازی می‌کند.

در این مقاله پسانتاری و مامایی ارومیه، دوره بازده، شماره دهم، پی در پی 51-52، ص 763-773

آدرس مکاتب: دانشگاه پسانتاری و مامایی ارومیه, تلفن: 051-55555545

Email: FHasavarie@gums.ac.ir
تولید و پخش هوایی، بسته با مدت زمان و فشارهای مورد نیاز، باعث تغییر مقدار آب در سطح و طبقه اجزای شیری می‌شود.

4. فشار ابریز

بیمارانی که با فشار ابریز مواجه هستند، ممکن است به همراه با افزایش فشار ابریز، فشار اسکلتی نیز افزایش یابند.

5. تغییرات ریوی

تغییرات ریوی نیز می‌تواند بر اثر تغییرات فشار ابریز تأثیر بگذارد.

6. سیستم تغییرات

سیستم تغییرات بیمار، که شامل دستگاه‌های تنفسی و دستگاه‌های اسکلتی است، می‌تواند به تغییرات فشار ابریز سریعاً پاسخ بدهد.

7. تغییرات دیگر

تغییرات دیگری می‌تواند به تغییرات فشار ابریز تأثیر بگذارد، مانند تغییرات کروماتوگرافی بافتی و تغییرات پارامترهای تنفسی.

8. نتیجه

نتیجه‌گیری می‌تواند بیان کند که تغییرات فشار ابریز می‌تواند تاثیرات مفیدی در بیمارانی که با فشار ابریز مواجه هستند داشته باشد.

1. Intensive Care Unit
2. Ventilatore Associated Pneumonia
3. Expiratory Rib Cage Compression
4. Squeezing

مجله دانشکده پرستاری و مامایی ارومیه

774 دوره یازدهم، شماره دهم، پی، در پی، 51، 1392

Unoki
Avena
Vibrator
American Association of Respiratory Cares
شده که مطالعه‌ای با هدف تعیین تأثیر فشردن فشله سینه بر آسمان بی‌خوده در مبانی تحت تهیه مکانیکی انجام دهد.

مواد و روش‌ها

این پژوهش مطالعه کارآزمایی بانی به طریق متقاطع بود که که در سال‌های 1972-1994 انجام شده، جامعه آمار مورد پژوهش این مطالعه را کلیه بیماران بستری در بخش‌های آی سی بی در گروه‌های آموزشی درمانی روز یا پورسپنر که شرط تکثیر دارد بودند پس از کسب مجوز انجام پژوهش از معاونت پژوهشی و کمیته اخلاق دانشگاه علوم پزشکی گیلان پژوهشگر به‌مدت 5 سال از 1972 تا 1977 به عنوان تحقیقی پژوهشگری درمی‌آمده رشت مراجعه‌های پزشک از این رضایت نامه کمیسیون قلمی قانونی بیمار مراجعه‌های پژوهشی که شمار 50 بیمار بستری در آی سی بی بود به روش تصادفی و در نظر گرفتن معیارهای ورودی و انتخاب شدند.

مبایری ورود به مطالعه سال 18 تا 56 سال داشتند لوله تراش اعمال در بیماری‌های ناشی از نوع حجمی برای مدت حداکثر 48 ساعت (19, 21). لوله روان‌پری در این آزمایش‌ها آنکار (SIMV) و بی‌خوده روان‌پری در این آزمایش‌ها آنکار (SIMV) و بی‌خوده لوله روان‌پری در این آزمایش‌ها آنکار (SIMV) و بی‌خوده

۱ Synchronized Intermittent Mandatory Ventilation
ج هد می‌شود به طوری که در کل مورد نشانگر آن‌ها قرار گیرد. اگر کار باشد، می‌تواند در صورت داشتن سایر عوامل بیشتری در مورد شناسایی تغییرات آن‌ها کمک کند. اگر از این موضوع برخورداری باشد، می‌تواند در صورت داشتن سایر عوامل بیشتری در مورد شناسایی تغییرات آن‌ها کمک کند.

با توجه به اینکه تغییرات در صورت اضافه کردن موارد جدید به مطالعه باعث این تغییرات می‌شود، در جدول شماره (۱) مشخصات فردی تنفسی واحدهای مورد پژوهش در جدول شماره ۱ جهت شناسایی متغیرها، از آزمون t-پاسکالی و آزمون t-مستقل استفاده شده است.

جدول شماره (۱): مشخصات فردی تنفسی واحدهای مورد پژوهش

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>آزمون و نت‌گیره</th>
<th>گروه B</th>
<th>گروه A</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن (بر حسب سال)</td>
<td>پیوسته (میانگین و انحراف معیار)</td>
<td>۵۱±۶±۸</td>
<td>۵۳±۶±۸</td>
</tr>
<tr>
<td>جنس</td>
<td>پیوسته (میانگین و انحراف معیار)</td>
<td>۱۲±۸±۸</td>
<td>۱۵±۸±۸</td>
</tr>
<tr>
<td>تعداد و درصد</td>
<td>پیوسته (میانگین و انحراف معیار)</td>
<td>۹۷±۸±۸</td>
<td>۹۷±۸±۸</td>
</tr>
<tr>
<td>نت‌گیره بیماری</td>
<td>پیوسته (میانگین و انحراف معیار)</td>
<td>۹۷±۸±۸</td>
<td>۹۷±۸±۸</td>
</tr>
<tr>
<td>تعداد و درصد</td>
<td>پیوسته (میانگین و انحراف معیار)</td>
<td>۹۷±۸±۸</td>
<td>۹۷±۸±۸</td>
</tr>
<tr>
<td>درصد</td>
<td>پیوسته (میانگین و انحراف معیار)</td>
<td>۹۷±۸±۸</td>
<td>۹۷±۸±۸</td>
</tr>
</tbody>
</table>

۱ Chi Square test
۲ Independent t-test
۳ ANOVA
۴ Mauchly
۵ Greenhouse-Geisser
۶ Repeated measure Sphericity
۷ Bonferroni
گزارش معنی‌داری در نوبت است (۷۷/۱۸±۰/۴۸) (جدول ۲ و نسخه دوم) در مقایسه دوگانه‌های بر اساس آزمون بین فروندی درصد اشباع اکسیژن شریانی ۱ دقیقه قبل با ۱ دقیقه بعد، ۱ دقیقه قبل با ۲۵ دقیقه بعد و ۵ دقیقه بعد از آزمایش معنی‌داری نیست. بر روی درصد اشباع اکسیژن شریانی تأثیر نداشتند (جدول ۳).

در بررسی اثر متغیرهای داخلی گربه در درصد اشباع اکسیژن شریانی، متغیرهای جنس، سن، طول بستری، فشار مثبت انتهای راه هوایی، تشخیص بیماری، فشار حرارتی و روده‌های با و بدون فشاری ارتباط معنی‌دار ارتباط اشباع اکسیژن شریانی داشت ولی با شماره لوله رتاشه ارتباط معنی‌دار در آماری تنازل (جدول شماره ۴).

پنجمین و انحراف معیار درصد اشباع اکسیژن شریانی در ۳ مراحل (۱ دقیقه قبل از ساکشن، ۵ و ۲۵ دقیقه بعد از ساکشن) در دو حالت با و بدون فشار در صورتی منفی در گروه‌های الف و ب بود.

جدول شماره (۲): پنجمین و انحراف معیار درصد اشباع اکسیژن شریانی در ۳ مراحل (۱ دقیقه قبل از ساکشن، ۵ و ۲۵ دقیقه بعد از ساکشن) در دو حالت با و بدون فشار در صورتی منفی در گروه‌های الف و ب.

<table>
<thead>
<tr>
<th>نوع آزمون و تیپ شماره SPO2 میانگین جمعی</th>
<th>نوع آزمون و تیپ شماره SPO2 میانگین جمعی</th>
<th>گروه B</th>
<th>گروه B</th>
<th>گروه الف</th>
<th>گروه الف</th>
<th>پنجمین</th>
<th>انحراف معیار</th>
<th>چندین دقیقه قبل از ساکشن</th>
<th>زمان ۵ دقیقه بعد از ساکشن</th>
<th>زمان ۲۵ دقیقه بعد از ساکشن</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاربر سریع</td>
<td>کاربر سریع</td>
<td>۷۹/۷۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
</tr>
<tr>
<td>کاربر سریع</td>
<td>کاربر سریع</td>
<td>۷۹/۷۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
<td>۹۸/۶۲±۵/۹</td>
</tr>
</tbody>
</table>

P-value < ۰/۵
جدول شماره (3): مقایسه تغییرات میانگین درصد اشباع اکسیژن شرایی با دیقمه قبل از ساختن با 5 و 25 دیقمه بعد از آن در گروه‌های آفر و ب.

جدول شماره (4): اثر منگر های داخلی گر در درصد اشباع اکسیژن شرایی

بحث و نتیجگیری

در پژوهش حاضر این نشان می‌دهد تفاوت معنی‌داری بین انجام ساختن با و بدون فشار به قسمت سینه بر روی درصد اشباع اکسیژن خون شرایی وجود دارد. این نتایج ارتباط ویژه‌ای با تربیت و تمرینات فیزیکی و همچنین مربوط به مطالعه آنولوپ نسبت به فشار می‌باشد که نقش مهمی در درمان این مشکلات دارد.

1. Routhen
2. Watts

1392

مجله دانشگاهی پرستاری و مامایی ارومیه

778 دوره بیاموز، شماره دهم، پیو در 51، دی 1392

Kozier
در مورد ارتباط فشار نهایی انتهایی بازدهی کم درصد اشباع اکسیژن شریafi یافته‌ها این امکان را به بیانی از ارزیابی فشار نهایی انتهایی بازدهی کم درصد اشباع اکسیژن شریافی که باید در این مطالعه از آن استفاده شود. بنابراین در این مطالعه، نتایج نشان می‌دهد که این بیانی به‌طور کامل به بیانی که یافته‌ها از آن استفاده شده نسبت به نتایج نهایی انتهایی بازدهی کم درصد اشباع اکسیژن شریافی می‌باشد.

cronobay@umsu.ac.ir

کیان‌پور، به‌سوی‌ربی، و حسین‌پور، و حسین‌پور

1 Generalization Estimating Equalization
2 Levine
References:

16. Farhadi K, Samna JA, Fakhri M, Jalalvand F. Study the two ways, open endotracheal suction and fiberoptic suction in mechanical ventilated patients in intensive
SPO2 781

THE EFFECTS OF RIB CAGE COMPRESSION ON SPO2

Yosefnia Darzi F1, Hasavari F*2, Khaleghdost T3, Kazemnezhad E4, Hoseini J5

Received: 5 Sep, 2013; Accepted: 31 Oct, 2013

Abstract

Background & Aims: Accumulation of secretions in airways is a serious complication in intubated and mechanically ventilated patients. Tracheal suctioning which is done with the aim of the secretion removal, can be used in conjunction with physiotherapy effectively. Therefore this study was carried out to determine the effects of expiratory rib cage compression before suctioning on arterial oxygen saturation in mechanical ventilated patients.

Materials & Methods: Fifty intubated, mechanically ventilated patients were studied in a crossover trial. The patients received endotracheal suctioning with or without rib-cage compression, with a minimum of 3-hour interval between the 2 interventions. The technique was performed ten times on each patient, with three respiratory cycle intervals between each application. Oxygen saturation were measured before, 5 and 25 minute after rib cage compression, as well as after endotracheal aspiration. Data were analyzed using paired t-tests and Greenhouse Geisser and Sphericity.

Results: There were no significant differences in the ratio of oxygen saturation between the 2 periods (before and after endotracheal suctioning) (p>0.05).

Conclusion: Due to the lack of significant differences in oxygen saturation suction method with and without chest compressions, further research is needed in this area.

Key words: endotracheal suctioning, Rib cage compression in expiratory time, arterial oxygen saturation

Address: Faculty of Nursing and Midwifery, Rasht University of Medical Sciences, Iran.
Tel: (+98) 5555056
Email: fHasavari@gums.ac.ir

1Nursing MSc student, Rasht University of Medical Sciences, Rasht, Iran
2MS in Medical Surgical Nursing, Rasht University of Medical Sciences, Rasht, Iran. (Corresponding Author)
3MS in Medical Surgical Nursing, Rasht University of Medical Sciences, Rasht, Iran
4PhD of Biostatistics, Rasht University of Medical Sciences, Rasht, Iran
5BSc in Physiotherapy, Poursina Hospital, Rasht, Iran