بررسی خواص فیزیکی لیزر و تاثیر آن بر روي بافت

رضای زدهی اقدم، مولود رادفر

تاریخ دریافت مقاله: 1396/5/10
تاریخ پذیرش مقاله: 1395/11/9

فصل نامه دانشکده پزشکی و مامایی
سال سوم، شماره سوم، پاییز 1382

چکیده

مقدمه: لیزر به معنی تقویت نور با گسیل الکتریکی تابش، وسیله‌ای است برای تولید پارکهایی از "نور" یک ناحیه، تکفا، در رشته‌ی فیزیک که یک نفس فضای منسجم با شاخه‌ی مکانیک می‌باشد. با توجه به این مشخصات، تابش لیزرهای پارکهایی از نور می‌باشد که یک اجاقی‌اند که به طور نسبی کم و تراکم انرژی در واحد می‌شود که آن سپاسگزاری نشان دهنده لیزر شامل محفظه‌ی قفل است که فرآیند اتم معمول در آن انفجار می‌باشد فردی که در آن قفل لیزر حاوی از خروج اتم درحاله‌ی تحریک به دفعات فصلی در این موادی هم را می‌تواند و با آنها و به مولکول‌های تحریک شده برخورد و باعث گسیل در انرژه‌ی بزرگ‌تری و فوتویهای دیگر نیز آزاد شده و شدت نوری ایجاد شده، نوع این آلوده‌ی زیاد می‌شود. منبع انرژی که را بی‌پیش‌تر می‌کند و در سایر الکترون‌ها به فرازهای بالاتر انرژی، نش می‌پذیرد این چک. به‌صورت از مقترن‌های نشان می‌دهد که برای لیزری موجب تغییرات بیوشیمیایی و فیزیولوژیکی در وسیله‌ی می‌تواند به بخش به دست تابش به سلول توسط اجزای نیترید بی‌پیش‌تر در غشاء سلولی جذب شده و فرازه‌ی احیا در زنجره‌ی تفسی در فعال می‌کند. لذا به دنبال تغییرات زنجره‌ی تفسی، تولید رادیکالهای آزادی را در سلول‌ها افزایش و سبب‌یاد استفاده قرار می‌گیرد لذا در برخورد با لیزری ایجاد مناسب با چگالی، توان آن در به‌هم‌کنش‌های فتوشیمیایی، اکسیژن و اکسیژن ایجاد و عوارض منفی و را می‌تواند منجر شود.

واژه‌های کلیدی: لیزر، خواص فیزیکی لیزر، تغییرات بیوشیمیایی

فصل نامه دانشکده پزشکی و مامایی اروپی، سال سوم، شماره سوم، ص 116-115، پاییز 1382

پژوهشگر: نوره، دانشکده پزشکی، دانشگاه علوم پزشکی اروپی، گروه رادیولوژی، رضا زدهی اقدم

ادرس مکاتبه: اروپی، دانشکده پزشکی، دانشگاه علوم پزشکی اروپی، گروه رادیولوژی، رضا زدهی اقدم

1 مربی گروه رادیولوژی دانشکده پزشکی دانشگاه علوم پزشکی اروپی
2 مربی پزشکی دانشکده پزشکی و مامایی دانشگاه علوم پزشکی اروپی
به‌عنوان مقدمه

از میان پیشرفت‌های برخی‌های فرم بیستم در علوم و مهندسی، لیزر به طرف منزله‌ی رفع به خود اختصاص داده است. کاربرد وسیع لیزر در علوم و مهندسی ناشی از ویژگی‌های خاص تاشی لیزر مولد نور همپسی است و بر خلاف سایر چشمه‌های نور عادی، تاشی است که از درجه بسیار بالایی تکفای، جهتندی و درخشندگی بهره‌مندی می‌باشد. درک صحیح لیزر مستلزم تسلط بر کوانتومی، نظیره الکترونومگناطیسی و اینک، اصول طیف‌نگاری و حتی الکترونیک است. بنابراین کلمه لیزر از حرف اول و از رهای انگلیسی به معنای تقویت نور با گسیل بالایی تاشی گرفته شد. لیزر وسیله‌ای است برای تولید باریک‌های از "نور" تکنیک در نواحی مادی‌های بنفش، مرغ رنگ و مادون قرمز ۳ طیف الکترونومگناطیسی که در آن همه موجها هم فاقدینی عکی باریک‌نور از نظر فضایی (به خاطر هم فاژی همه امواج) و هم‌زمانی به خاطر ریکسیئی فرکانس امواج متسامحه‌ها می‌باشد. در نتیجه این انسام، باریک‌های داریم که ویژگی‌ای آن به طرف نسبی اندک و تراکم افزودن در واحد سطح آن هم در دهانه خروجی لیزر به هم در سر دیگر،

1- Laser: Light Amplification Stimulated emission Radiation
2- Utera
3- Infra Red

در فاصله دور بسیار زیاد است. این چگالی توان تقیبیاً ثابت در هر دو انتهای باریکه (که بافت مناسب با عکس مجازی فاصله نشست یک چشم نقطه‌ای غیر منسجم نور یا شدت تابش یونتنه کامل‌ا متفاوت است). عامل مهمی در خطر بالقوه لیزر محسوب می‌شود (1).

همه لیزرها شامل سه قسمت اساسی هستند:

۱- یک حفره نوری با مقدار Q زیاد که یک انتهای آن به طور کامل و انتهای دیگر آن به طور جزئی باز تانده است. در اینجا مفهوم فیزیکی همان مفهوم کمیت Q است که برای توصیف پرخی آرایش‌های مدار در الکترونیک به کار می‌رود.

۲- مدار را به انرژی ذخیره شده در یک وسیله خاص با آرایش مدار را به انرژی ذخیره شده در واحد زمان به دست می‌دهد.

انرژی ذخیره شده

Q=

وان تلف شده

انرژی ذخیره شده

Q=

زمان/انرژی تلف شده

۳- محیط لیزر: ماده‌ای است که می‌توان آن را با افزودن از طریق "پیمان" برانگختی و به حالش بیانی داریم. محیط لیزری ممکن است به شکل جامد، مايع و یا گاز باشد. محیط‌های لیزری متدال...
فوتون‌هایی از نور عادی غشی می‌شود. این الکترون‌ها
با افزایش انرژی به یکی از روش‌های زیر ممکن است
برانگیخته شوند و به ترکانی انشزایی بالاتر رود.

1- جذب انرژی از فوتون‌ها، نظر مورد فلورسانتی.

2- جذب انرژی از ذرات پارادار، نظر مورد رنگ‌های
درخشان یا مواد فسفرسان لامپ برتو کاندی

3- گرم دادن، نظر مورد لامپ تثبیتی معمولی با
قطعه‌ای فلزی ای که دمای خیلی زیاد گرم شده
است.

4- برخورد با سایر الکترون‌ها، نظر مورد لامپ مهتابی
یا لام تون.

5- واکنش‌های شیمیایی گرم‌زایی، نظر مورد شعله (8).

در نور معمولی، گذار الکترونی به طور گسترده‌ای روی
می‌دهد و در نتیجه فوتون‌ها از طبیعتی با یکدیگر ندارند.
از سوی دیگر، در لیزر الکترونی با "پیمان" انرژی
برانگیخته می‌شوند و به حالت شبه پایدار نسبتاً دراز
عمر می‌روند، و در آنجا آن قدر باقی می‌ماند تا یک
فوتون عبوری با انرژی دقیقاً مناسب و درست، یک
گذار به ترک انرژی پایینتر را اگرند که در این صورت
همه اتمهای برازگیخته به طور همزمان فوتون‌های با
عبره می‌باید از میله‌های یاقوتی، نته‌دویم- یاک 1، هیلوم-
تنون، آرگون و دی اکسید کربن.

3- پمپ کردن یا دم شدن انرژی- چشم انرژی لازم
برای برازگیختن اتمهای محیط لیزری ممکن است یک
منبع قوی نور باشد که در گستره وسیعی از انرژی‌ها
فوتون گسیل می‌کند و به ضرورت شامل فوتون‌های
است که با انرژی کوانکومی، اتمهای لیزری را
برانگیخته می‌کند یا چنینچه در مورد لیزر قزرای دیده
می‌شود، یک چنینچه در مورد لیزر قزرای دیده می‌شود،
یک مولد ولتاژ فرکانس رادیویی به طور تقریبی
ولی است که بینها را شتاب می‌دهد و بینها هم به
نوبه خود در اثر برخورد با اتمهای لیزری، آنها را
برانگیخته می‌کنند. در لیزر‌های نیمه رسانا (دیود) با
عبور یک جریان الکتریکی بسیار شدید، از مرتین صدا
تا هزار آمپر در هر cm2 از محل اتصال نیمه
پ‌ن رسانا در آن ایجاد پمپز می‌کند (5).

کارکرد لیزر
برطبیق مدل اتمهای بور، هنگامی که الکترون‌ها از حالت
برانگیخته به یک ترک انرژی بایین می‌روند،

\[\text{Nd - Yag} \]
\[\text{He -Ne} \]
\[\text{Ar} \]
\[\text{Co2} \]
\[\text{Boher} \]
انرژی یکسان گسیل می‌کند انشین ۱ در نظریه فنونالترکیب ثابت کردن فوتونی که انرژی آن به طور دقیق، برای یک انرژی یک الکترون در حاله برانگیخته است، می‌تواند رابطه برانگیخته را به حالت پایه بردار و بدين ترتیب فوتونی گسیل شود که فرکانس آن با انرژی برانگیختی مناطق باشد. نتیجه‌آوری‌ها از فوتون‌های گسیل شده و فوتون‌های برانگیختنده یکسان است، بلکه هم‌فاز هم هستند (۲).

فعالیت لیزری

در شرایط عادی بیشتر انتخاب در هر محدود، در حالت پایه هستند. انتخاب در اثر حرکت برای با هم برخورد می‌کند و در این برخورد ممکن است انرژی کافی برای رساندن انتخاب به یک تراز برانگیخته، و بدل شود. از این رو اگر چه بیشتر انتخاب در حاله پایه هستند، برخی از آنها ممکن است به یکی از جنین حال برانگیخته بروند. رابطه میان تعداد انتخاب در هر دو تراز انرژی با معادله پولتزمن، نشان داده می‌شود. که در آن N_2 به ترتیب تعداد انتخاب موجود در $K.N_2=N_1e^{(E_2-E_1)/KT}$،$E_2$ و E_1 ترازهای

\[K.N_2=N_1e^{(E_2-E_1)/KT} \]

\[^{1}\text{Einstein} \]
\[^{2}\text{Boltsman} \]
چگالی توان چگالی انرژی

چگالی انرژی از نظر ریاضی عبارت است از نسبت کل انرژی تولید شده به سطحی رادیاسیونی که در ابتکار بوده تا به قدر دستگاه مورد تحقیق گرفته است و با واحد زول بر سانتیمتر مربع مشخص می‌گردد (J/Cm²).

حاصل ضرب چگالی توان در زمان به دست می‌آید.

چگالی توان مستقل از زمان است و عبارت است از توان خروجی لیزر، تقسیم بر سطح تابش.

فاکتورهای

چگالی انرژی و چگالی توان هستند که نوع تأثیر لیزر بر بافت را تعیین می‌کند. معمولاً یکنواختن آن است که اندوزه سطح تابش، تأثیر مهمی در نوع اثر لیزر بر بافت دارد و باعث محاسبات به عنوان فاکتوری مهم در نظر گرفته شود. بدان معنی که در دو لیزر با توان یکسان و در زمان تابش یکسان، چگالی انرژی و توان با سطح مقطع تابش نسبت عکس دارد و به دلیل تفاوت سطح تابش ممکن است این لیزرها اثرات کاملاً متفاوتی بر بافت تحت تابش داشته باشد. از آنگا که پرتوهای لیزری با به طور معمول نرمال هستند، سطح مقطع تابش در مساوی‌تام مختلف از منبع تولید باید ثابت بمانند. اما در عمل چنین نیست. همه پرتوهای لیزر مقدار ناجی اما تأثیرگذاری از واحدها 1

شکل 1

یافته‌های تشکیل لیزر در ماده فعال یک دستگاه لیزر

1. Irradiance
2. Fluence
تایب، وابسته به دو فاکتور اصلی چگالی توان و زمان

آینه‌ای دو طرفه هستند. بیشتر صدق می‌کند؛ به این

می‌توان این اثرات مختلف

روی لیزر متفاوت است. پس چگالی توان و انرژی

در مواقعی که پروب لیزر در فواصل مختلف از بافت

قرار می‌گیرد فرق می‌کند. لذا اگر پروب لیزر به بافت،

دور یا تندیک شود. تأثیر لیزر بر بافت تفاوت خواهد

کرد. در بسیاری از موارد کنتل تأثیر لیزر از طریق

سطح مقطع تابش‌ی می‌توان از عدسی استفاده نمود.

چنان‌چه اگر یک عدسی همگرا در مسری عدسی

لیزر قرار داده و فاصله آن با بافت، طولی تنظیم شود

که مساوی فاصله کانونی عدسی باشد؛ پروب لیزر در

نقطه کانون عدسی متمرکز و تأثیر آن بهترین حد

خواهد بود. چگالی انرژی که به مفهوم کل انرژی

رسیده به بافت از نوع تأثیر لیزر را تغییر می‌کند و

از کمترین مقدار در حدود J/Cm² می‌توان یک لیزر به کار می‌آید تا بیشترین

زیستی با لیزرها کم توان به کار می‌آید. تا بیشترین

حد، یعنی 1000 J/Cm² که منجر به نور گستختگی

1

می‌شود تغییر است. به عبارت دیگر می‌توان گفت

چگالی یکسان، تأثیر یکسانی بر یک حجم ثابت از

بافت می‌گذارد. چگالی انرژی صرف نظر از سطح مقطع

Photo distortion
نمودار ضریب جذب ملانین- همغولوبین بر حسب نوع طول موج لیزر

d*nm 280، nm 320، nm 340، nm 400، nm 420، nm 540، nm 550، nm 580

طول موج قطع دیده می‌شود.

از آنجایی که نه آب، نه مارکو مولکول‌ها در ناحیه مادون قرمز نزدیک (nm 400-600) جذب شدیدی ندارند، در این ناحیه نور با تلفات کمتری به بافت‌های بیولوژیکی نفوذ می‌کند لذا می‌توان با لیزرها در این طول موج‌ها، در لیزه‌های عمیق‌تر بافت، عمل درمانی لیزر را انجام داد. زمانی که نور لیزر به بافت می‌رسد، مانند برخورد هر بافت الکترومغناطیسی به ماده، ممکن است دچار بازتاب و شکست، جذب و پراکندگی شود و یا در نهایت از آن عبور کند. اینکه در برخورد لیزر و بافت کدام اتفاق رخ می‌دهد، بستگی به ویژگی‌های تور لیزر (پرتوه طول موج، چگالی توان) و نیز ویژگی‌های بافت (ضریب جذب، ضریب شکست، پراکندگی) دارد. در نهایت برخورد بافت‌های بافت انسانی به طول موج و شدت این بافت باستگی دارد (2).

تأثیرات لیزر بر بافت

در بافت‌های بیولوژیک قرار گرفته جذب، معمولاً به‌حث اصلی تأثیر لیزر را شامل می‌شود که به طور اساسی توسط مولکول‌های آب و مارکو مولکول‌های نظیر پروتئینها و پیگمنتها (رنگدانه‌ها) انجام می‌شود. در حالت که جذب مادون قرمز طیف الکترومغناطیسی به مولکول‌های آب نسبت داده می‌شود در ناحیه مانور اشفاً و مرتبط، پروتئینها و پیگمان‌ها جذب بالاتری دارند به 280 nm ویژه پروتئین‌ها دارای قله جذب در حدود هستند. در منحنی یک طیف جذب دو جاذب بیولوژیک بینادی یعنی ملانین و همغولوبین (HbO2) به عنوان مثال نشان داده شده است. ضریب جذب ملانین از طول موج‌های مربی به سمت مانور اشفاً پیوسته می‌باشد.

280 nm
الف- تشعشع نوری: با تاپش نور قرمز (630 nm) لیزر به سلول‌های سرطانی که توسط مشتقات همتوپرورین حساس شده و ایجاد واکنش و تخریب درون تومور نموده و آن را متلاشی می‌سازد.

ب- قدرت ایجاد نور: تاپش بر انژی موارد بیفش، باندهای بین مولکول‌های شکسته و ذرات مولکول‌های تبخیر می‌کند و بررس دقيقی از نظر وسعت و عمق حاصل می‌شود.

برهمکشی گرماتی:

لین واکنش شامل کلیه آثاری که افزایش دمای وضع تاپش، مهیمین بر پارامتر متغیر در آن می‌باشد. برهمکشی گرماتی مهیمین زمینه کاربرد لیزرها یه‌یکی را تشکیل می‌دهد که بیشترین استفاده را در این زمینه بیشتر در جراحی لیزری دارد. جگالی توان منجر به این پدیده در محدوده 6 تا 10 W/cm² و زمان تاپش 1/10 ثکیاقی عمل می‌کند. همان طور که از جدول (1) بیدا است تغییرات دمای بسته به نیاز آن اثراتی چون انقعاد، تبخیر، ذوب و کردن، شدن را در بافت تحت تابش ایجاد می‌کند که این اثرات به طور خلاصه مورد بررسی قرار می‌گیرند، بايد

جدول شماره (1) اثرات بیولوژیک لیزر بر بافت بر حسب دمای حاصل از لیزر

<table>
<thead>
<tr>
<th>دما (درجه سانتی‌گراد)</th>
<th>اثرات بیولوژیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبیعی</td>
<td>37</td>
</tr>
<tr>
<td>هیپرتئمیا</td>
<td>45</td>
</tr>
<tr>
<td>کاهش فعالیت انزیما و توقف حرکتهای سلولی</td>
<td>50</td>
</tr>
<tr>
<td>تغییر ماهیت پروتئین کلاژن، انقعاد</td>
<td>60</td>
</tr>
<tr>
<td>قابلیت گردشی غشاء</td>
<td>80</td>
</tr>
<tr>
<td>تبخیر، کندگی</td>
<td>100</td>
</tr>
<tr>
<td>زیستی شدن</td>
<td>150</td>
</tr>
<tr>
<td>دوب</td>
<td>300</td>
</tr>
</tbody>
</table>

انواع تأثیرات لیزر بر بافت

برهمکشی فتوشیمیاتی:

در این برهمکشی، به طور معمول چگالی توان پایین (برای مثال در حدود 1 W/cm² و زمان پرتو‌های طولانی تر از چند ثانیه است) افزایش دمای قابل توجهی در بافت تحت تابش وجود ندارد.

انرژی جذب شده توسط ابرکولوترون مولکول‌ها باعث شرکت مولکول در فصل و انفعالات شیمیایی می‌گردد.

باافت ناسال حساس به نور متلاشی می‌شود. امواج کوتاه موارد بینفیس بدن نحو عمل می‌کند و استفاده از این پدیده به دو طریق امکان‌پذیر است:

* Photochemical
* Photodynamic
* Thermal

2 Phtoradiatin
3 Phtoablation
4 Thermal
Laser interstitial therotherapy
Solid

Photocoagulation
Hyperthermia

\[C < 42 \]

\[C > 42 \]

\[C < 50 \]

\[C > 50 \]
تبخير

انزی دریافته بافت به حدی است که درون و اطراف سلولی تبخیر می‌گردد و این امر منجر به انهدام و از هم گسخختگی سلول‌ها می‌شود. از سوی دیگر بخار ایجاد شده باعث می‌شود گرماً اضافی انتقال یافته و از هرگونه افزایش دما در بافت مجاور جلوگیری می‌شود.

گسخختگی بافت به علت افزایش حجم ناشی از تبخیر رخ می‌دهد؛ بیشترین استفاده لیزر، بیوزه در جراحی لیزری با استفاده از این یاد ره دمده. از مزایای این روش قابلیت کاربرد آن است که در ضایعات سطحی، کوتور کردن عروق خونی اطراف پرش و ایجاد زمینه‌های بدون خونریزی می‌باشد. لیزر بهترین و سیلایی است که بهینه تری عمل می‌کند و در جراحی‌های دهان و گوش- حلق- بینی و در برداشت لیاه‌های آپ دندانی به کار می‌رود.

کربنی شدن

زمینه مولکول‌های آپ تبخیر شوند و برتوپه لیزر همچنان ادامه یابد. روند افزایش حرارت ادامه می‌یابد. در دمای بیش از 1000 متر به سوخت املاح و مواد آلی (کربنی شدن) می‌شود؛ که این عمل همراه با

1. Vaporization
2. ENT
3. Photocarbonization

1 Melting

A Survey of Effective Factors on Mental Health

A Study on the Physical Properties of Laser
and Its Effects on Tissue

Zohdi Aghdam R, Radfar M

Abstract:

Light Amplification by Stimulated Emission of Radiation or LASER is used as a tool for producing a monochromatic light with radiance on a solid unit angle LASER light is convergent with lowest divergence and has high density energy area units. Physical components of laser include an active material in which alk inversion process occurred. Light photons that are produced by stimulatn intensifier chamber transfer the space between two mirrors frequently during they have a contact with stimulated atoms or molecules. This process causes emission and finally the intensity of light increases significantly. Energy, source xx pumps the space ascends the electrons to a higher level of energy Many q showed that laser beam causes many physiological and biochemical changes in components, so the light could be absorbed in mitochondria and cell membe after that the reduction process could be activated in cellular respiratory chain. changes in respiratory chain, free radical productions in the cell will increase w has a lot of effects on cellular procedures. Considering the fact for curing various diseases in ophthalmology, different lhave been applied and its contact with different tissues with different irrad creates photochemical, thermal, and ionization which can have different side effects on the tissue.

Key Word: Laser, Tissue, Interaction

Address: Radiology Department, Paramedical University, Iran.