بررسی خواص فیزیکی لیزر و تاثیر آن بر روز بافت

پریا زهدي اقدم، مولود رادفر
تاریخ دریافت مقاله: ۱۰/۸/۴۴
تاریخ پذیرش مقاله: ۸۵/۱۱/۹

فصلانه دانشکده پرستاری و مامایی
سال سوم، شماره سوم، پاییز ۱۳۸۲

چکیده
مقدمه: لیزر به معنی تقویت نور با گسل الکتریکی که سیلایی است برای تولید باریکهای "نور" یک نگاه، تکنیکی در رشدگذشته در واحد زاویه فضایی که از نظر فضایی منسجم با شمعه‌های متفاوتی می‌باشد. با توجه به این مشخصات، بخشی از باریکهای نور می‌باشد که واقعاً آن به طور نسبی کم و تراکم انرژی در واحد سطح آن زایم است. اجزای فیزیکی شکلدهندگی لیزر شامل محلول مایع است که قرارداد مرجع ماکس در آن اتفاق می‌افتد، خوراکی ماکس تشکیل‌دهنده لیزر شمار محیط فعال است که قرارداد اتم مکانیکی در آن قرار می‌گیرد. خوراکی ماکس تحت شرایط تکثیر کننده که در آن فوتون نوری حاصل از خروج اتم درحال تحريك به دفعات قابل اعمال دارای نواحی هست و با این تراکم انرژی در واحد سطح آن زایم است. اجزای فیزیکی بسته‌ها و وسایل تولید باریکه‌ها، هم اکثریت انجام افزایش سطح در سطح زمین را می‌نمایند. احتمالاً این در آن، خیال می‌دهد که بر حسب لیزر موج‌های بیوشیمیایی و فیزیولوژیک قابلی در آسا می‌شود. با توجه به این شیب از نظر نسبی به سرعت نوزادان می‌تواند و غشاء سولوی جذب شده و فرآیندهای احیا در زنجیره تنفسی را فعال می‌کند. لذا به دنبال تغییرات زنجیره تنفسی، تولید رادیکالهای آزاد را در سلول‌های ویاژی و بسیاری از عملکرد سولوی را می‌گیرد. لذا به اینکه لیزر محیط‌ناپایدار بر طبق با چشم شناسی‌ها در رسانیدن پارامترهای مختلف مورد استفاده قرار می‌گیرد، لذا در برخورد با بخشنده‌های مناسب با چگالی، می‌توان آنها را برم کردن شکل‌های فتوشیمیایی، گرمایی و پنانسیون ایجاد و عوارض منفی‌ناپایدار را توانا منجر شود.

واژه‌های کلیدی: لیزر، خواص فیزیکی لیزر، تغییرات بافتی

فصلانه دانشکده پرستاری و مامایی اروپیه، سال سوم، شماره سوم، ص ۱۱۶-۱۱۷، پاییز ۱۳۸۲

آدرس مکاتبه: اروپیه، دانشکده پریاناتوری، دانشگاه علوم پزشکی اروپیه، گرهود رادیولوژی، رضا زهدي اقدم

۱ مربی گرهود رادیولوژی دانشکده پریاناتوری دانشگاه علوم پزشکی اروپیه
۲ مربی پرستاری دانشکده پرستاری و مامایی دانشگاه علوم پزشکی اروپیه
در فصل‌های دور بسیار زیاد است. این چگالی توان تقریباً
ثابت در هر دو انتهای باریکه (به‌افتد مناسب با
عکس مجذور فاصله شدت یک چشمه نقطه‌ای غیر
منسجم نور یا شدت تابش بوندنه کاملاً متفاوت است).
عامل مهمی در خط بالقوله لیزر محسوب می‌شود (1).

۱-

همه لیزرهای شامل سه قسمت اساسی هستند:

۱- یک حرفه نوری با مقدار \(Q \) زیاد که یک انتهای آن
به طور کامل و انتهای دیگر آن به طور جزئی باز تانده
است. در اینجا مفهوم فیزیکی \(Q \) همان مفهوم کمیت
است که برای توصیف برخی آرایش‌های مدار در
الکترونیک به کار می‌رود. در اینجا مفهوم کمیت
نسبت انرژی ذخیره شده در یک وسیله خاص با آرایش
مدار را به انرژی تلف شده در واحد زمان به دست
می‌دهد.

\[
\text{انرژی ذخیره شده} = \frac{Q}{\text{مقدار تلف شده}}
\]

۲- محیط لیزر: ماده‌ای است که می‌توان آن را با
افزودن از طریق "پیمان" برانگیخته و به حالت شبه
پایداری انتقال داد. محیط لیزری ممکن است به شکل
جامد، مایع و یا گاز باشد. محیط‌های لیزری متدل

از میان پیشرفت‌های برجسته‌ای بطرف حضور در علم و
مکانیک، لیزر به حق منزلتی رفع به خود اختصاص
داده است. کاربرد وسیع لیزر در علم و مهندسی ناشی
از ویژگی‌های خاص پسری لیزری مولد نور همدوی
است و بر خلاف سابق چشم‌های حاضر، تابشی
است که از بزرگعسی بالایی تغییر، جهت‌مندی و
درخشندگی پهنه‌مند می‌باشد. درک صحیح لیزر مستلزم
تسلط بر کوانتومی، نظیری الکترومغناطیسی و اینک،
اصول طیف نگاری و حتی الکترونیک است. بنابراین
کلمه لیزر از حروف اول واردهای انگلیسی به معنا
تقویت نور با گسل الکترالی تابشی گرفته شده است. لیزر
و سیلهای است برای تولید باریکه‌ای از "نور" تکنیک
در نواحی مارا به فش ۱، مرنی و مادون قرمز ۳ طیف
الکترومغناطیسی که در آن هم موجها هم فازه‌ی باریکه
نور از نظر فضایی (به حاصل طیف قازی همه
امواج) و زمانی به حاصل یکسا انرکاس امواج منسجم
همدستی. در نتیجه این انسام، باریکه‌ی دارای که
واگرانی آن به حوالی نسبی انداز و تراکم انرژی در واحد
سطح آن، هم در دهانه خروجی لیزر و هم در سر دیگر،

۱ Laser: Light Amplification Stimulated emission
Radiation
۲ Utera
۳ Infra Red
فوتون هایی از نور عادی کسیل می شود. این الکترون ها با افزایش انرژی به یکی از روش های زیر ممکن است برانگیخته شوند و بر تر انرژی بالاتر رود.

1- جذب انرژی از فوتون ها، نظری بر مورد فلورسانتی.

2- جذب انرژی از ذرات باردار، نظری بر مورد رنگهای درخشان با مواد فسفرسان لامپ برتو کادی.

3- گرم دادن، نظری مورد لامپ الکترونی معمولی با قطعه یی قزی ایم فلز یا شیشه که یک دمای خیلی زیاد هم شده است.

4- برخورد با وسایل الکترونی، نظری مورد لامپ مهتابی یا لام نتون.

5- واکنش های شیمیایی گرم آور، نظری مورد شعله (8).

در نور معمولی، گذار الکترونی به طور گسترده‌ای روی می دهد و در نتیجه فوتون ها از میان گذارنده از سوی دیگر، در لیزر الکترونی با "سپری" انرژی برانگیخته می شوند و به حال زیر با ایجاد نیرویی در ایجادن پیش از الکترونی به طور همزمان فوتون ها با

عبارتند از میلهای یاقوتی، نتودروم - یاک 1، هیلیوم - نتون، ارگون و دی اکسید کربن.

3- پمپ کردن با دمش انرژی - چشمه انرژی لازم برای برانگیختن اتمهای محيطی لیزری ممکن است یک منبع قوی نور باشد که در گستره وسیعی از انرژی ها، فوتون های میکرو و به ضرورت شامول فوتون هایی است که با انرژی کواتومی، انمهای لیزری را برای برانگیختن می کند. با چند جهت در مورد لیزر گازی دیده می شود، یک چنجه در مورد لیزر گازی دیده می شود، یک مولد ولتاژی که با نور تقویت 1000 ولت است که کننرها را شتاب می دهد و بین ها هم به نوبه خود در اثر برخورد با انمهای لیزری آنها را برانگیخته می کند. در لیزرهای نیمه رسانا (دیود) با عبور یک جریان الکتریکی پس از شدید از مسیحی P-N، از محل اتصال نیمه رسانا در آن ایجاد پمپز می کند (5).

کار کرد لیزر

یکی از مدل اتمهای بور، هنگامی که الکترون ها از حالت برانگیخته به یک ترار انرژی پایین می روند، همه انمهای برانگیخته به طور همزمان فوتون ها با

1. ند - یاگ
2. هی - نی
3. آر
4. کو 2
5. بوهر
اثری یکسان گسیل می‌کند استثنی ۱ در نظریه
فتوالترکیک تابث کردن سیستم که اثری آن به طور
دقیق، برای با اثری یک الکترون در حالت برانگیخته
است، می‌تواند الکترون برانگیخته را به حالت یکه براد
و بدری ترتبی فتوتونی گسیل شود که فرکانس آن با
انرژی برانگیخته مناطق باشد. نتیجه‌ای در اثری
فتوتونی گسیل شده و فتوتونی برانگیزانند به یکسان
است، بلهک هم‌فازی هم هستند (۲).

۲. فعالیت لیزری

در شرایط عادی پیشتر انتی‌ها در هر محيطی، در حالت
پایه هستند. انتی‌ها در اثر حرکت برایی با هم برخورد
می‌کندند و در این برخورد‌ها ممکن است اثری کافی
برای رساندن اتم به یک تراز برانگیخته، ردو بدل
شود. از این رو اگر چه پیشتر انتی‌ها در حالت پایه
هستند، برعکس از آنها ممکن است به یکی از چندین
حالی برانگیخته برود. رابطه میان تعداد انتی‌ها در هر دو
تراز اثری با معادله بولتزمن، نشان داده می‌شود که در
آن N_2 به ترتبی تعداد انتی‌ها موجود در
$K.N_2=N_1\frac{N_{1e}(E_2-E_1)/KT}{E_2}$ و E_1 و E_2

\[1\] Einstien
\[2\] Boltsman

\[N_{1e}\]
چگالی توان چگالی انرژی

چگالی انرژی از نظر ریاضی عبارت است از نسبت کل انرژی تولید شده به وسیله لیزر به سطحی از بافت که مورد تابش قرار گرفته است و با واحد زول بر سانتیمتر موردن استفاده قرار گیرنده است (J/Cm²).

حاصل ضرب چگالی توان در زمان به دست می‌آید. چگالی توان مستقل از زمان است و عبارت است از توان خروجی لیزر. تخمین‌بر پر طراحی چگالی انرژی و چگالی توان هستند که نوع تأثیر لیزر بر بافت را تعیین می‌کنند. معنا این یافته آن است که اندما سطح تابش، تأثیر معمول در نوع اثر لیزر بر بافت دارد و باید در محاسبات به عنوان فاکتور مهم در نظر گرفته شود. بدایا معمولی که در دو لیزر باید توان یکسان و به زمان تابش یکسان، چگالی انرژی و توان با سطح مقطع تابش نسبت عکس دارد و به دلیل تفاوت سطح تابش ممکن است این توان انرژی اثرات کاملاً مختلفی بر بافت تحت تابش داشته باشد. از آنجا که پرتوهای لیزر با همکاری تولید و هم‌جز تولید سطح مقطع تابش در مسافت‌های مختلف از منبع تولید باید ثابت بمانند، اما در عمل چنین نیست. همه پرتوهای لیزر مقدار ناجی اما تأثیرنگاری از واقعیت را

نمونه ماند و انسجام باریکه حفظ می‌شود. وقتی باریکه به انتها کامل بز تابنده بخورد می‌کند، جهت آن معکوس می‌شود و به گسل القایی فوتونها و افزایش گرفت. انتهاه می‌دهد تا اینکه، به انتها

دبیر (انهای بز تابنده جزئی) می‌رسد. در اندازه بالا از پرتوهای باریکه، خارج می‌شود و به‌شکل باز می‌تابند و به فرایند گسل القایی فوتون ادامه می‌دهند این عمل لیزری تنها وقتی ادامه می‌یابد که برای برانگیختن اتم‌ها و حفظ وارونی جمعیت، انرژی کافی به محیط لیزر برسد. طول موج این نور با اختلاف میان تراز حالت شبه‌پایدار و تراز انرژی پایینی محدود لیزر متنازل است. بازده لیزر فوق العاده کم است. در بیشتر انواع لیزرها کمتر از ۱۰۰٪ از انرژی چپ شده به سیستم به تابش منسجم می‌تفقی می‌شود (۳).

شکل ۱ فرآیند تشکیل لیزر در ماده فعال یک دستگاه لیزر

\[\text{Irradiance} \]
\[\text{Fluence} \]
تاش، واسته به دو فاکتور اصلی چگالی توان و زمان است. (چگالی توان × زمان تاش). بنابراین می توان با تغییر دادن هر یک از این دو عامل، تأثیر بر پرتو را تغییر داده و سپس آماری و داده های که می تواند این اثرات مختلف را از یکدیگر تفکیک کند، همان زمان پرتو دهی و لذا به نظر می رسد که برای یکنار چگالی توان، اصلی ترین فاکتور، کنترل عرض بالس پرتو و زمان است. با توژه به نمودار روبرو انواع برهمکنش پرتو بافت به آسانی مشخص می شود.
با توژه به اینکه برهمکنش‌های پرتو و بافت به طور کامل از یکدیگر تفکیک نمی‌شود، اما با توژه به شکل (۲) تغییر زمان تاش پرتو می‌توان این اثرات مختلف را انتظار داشت.
شکل (۲) نمودار برهم کننده پرتو- بافت. داروهای حدود تخمینی پارامترهای پرتو- بافت به یک نوع پرتو همکشی خاصی را نشان می دهد.
دارا هستند که در لیزرها متغیر متغیر است. این موضوع به ویژه در مورد لیزرها دیوبیکت، که فاقد آینه‌ای دو طرفه هستند، بیشتر صدق می‌کنند؛ به این معنی که سطح مقطع پرتو لیزر در فواصل مختلف مبتنی لیزر متغیر است. پس چگالی توان و انرژی در موافقت که پروب لیزر در فواصل مختلف از پرتو قرار می‌گیرد فرق می‌کند، لذا اگر پروب لیزر به بافت، دور یا نزدیک شود تأثیر لیزر بر پرتو تفاوت خواهد کرد. در سیستم‌های موارد یکنار تأثیر لیزر از طریق سطح مقطع تاش، می‌توان از عدسی استفاده نمود.
چنین‌که اگر یک عدسی همگرا در مسیر عدسی لیزری قرار داده و فاصله آن با بافت، طولی تنظیم شود که مساوی فاصله کانونی عدسی باشد؛ پرتو لیزر در نقطه کانون عدسی متمرکز و تأثیر آن بیشترین حد خواهد بود. چگالی انرژی که به معنی کل انرژی رسمی به بافت است، نوع تأثیر لیزر را تعیین می‌کند و از کمترین مقدار در حدود J/Cm² به تجربه زیستی با لیزرها کم توان به کار می‌آید. این مقدار به ضرک خاصی
حد ۱۰۰۰۰ J/Cm² که منجر به نور گستختنی ۱ می‌شود متغیر است. به عبارت دیگر می‌توان گفت چگالی یکسان، تأثیر یکسانی بر یک حجم ثابت از بافت می‌گذارد. اگر چگالی انرژی صرف نظر از سطح مقطع

¹ Photo distortion
نمودار ضریب جذب ملاین- هموگلوبین بر حسب نوع طول موج لیزر

تأثیرات لیزر بر بافت

در بافت‌های بیولوژیک، فرایند جذب، معمولاً بخاطر اصلی تأثیر لیزر را شامل می‌شود که به طور اساسی توسط مولکولهای آب و مکرو مولکولهای نظیر پروتئین‌ها و بیگمات (رنگدانه‌ها) انجام می‌شود. در حالت که جذب مادون قرنطینه مصرف‌کننده الکترومغناطیسی به مولکولهای آب نسبت داده می‌شود در ناحیه موارد بی‌فیلم یا در ناحیه موارد بی‌فیلم و جذب همگنی فیلم جذب بالاتر دارد به طول موج ۸۰۰nm ویژه پروتئین‌ها درایل قله در حدود ۴۰۰nm، در منحنی یک طیف جذب دی جذبی بیولوژیک بین‌دهی به عنوان (HbO₂) به عنوان مثال نشان داده شده است. ضریب جذب ملاین از طول موج‌های مناسب به سمت ماروئه نشان افراشی می‌یابد قله‌های مناسب جذب هموگلوبین در nm ۲۸۰، nm ۳۲۰ و nm ۵۴۰، nm ۶۸۰، nm ۷۴۰ و nm ۳۲۰ می‌باشد.
الف- تشعشع نوری\(^1\) با تابش نور قرمز (\(630\) nm) لیزر به سلول‌های سرطانی که توسط مشتقات هماتوبورین حساس شده و ایجاد واکنش و تخریب درون تومور نموده و آن را متلاشی می‌سازد.

ب- قدرت ایجاد تابش بر انرژی ماوره بفیش، باندهای بین مولکولی را شکسته و ذرات مولکولی را تبعیذ می‌کند و برآمد دقیقی از نظر وسعت و عمق حاصل می‌شود.

برهمکنش گرماتی\(^2\)

ین واکنش شامل کلیه آثاری که افزایش دمای موضع تابش، مهارتنی پارامتر متغیر در آن می‌باشد. برهمکنش گرماتی مهارتنی زمینه کاربرد لیزرها یکشکی را تشکیل می‌دهد که بدین‌سان استفاده را در این زمینه افراد در جراحی لیزری دارد. چگالی توان منجر به این پدیده در محدوده \(6 \times 10^{-2}\) W/cm\(^2\) و زمان تابش \(10^{-1}\) S یا دقیقه عمل می‌کند. همان طور که از جدول (1) یبد است تغییرات دما بسته به میزان آن، اراتی چون انعقاد، تبعیذ، ذوب و کریستالی شدن را در بافت تحت تابش ایجاد می‌کند که این اثرات به طور خلاصه مورد بررسی قرار می‌گیرند. باید

جدول شماره ۱ اثرات بیولوژیک لیزر بر بافت بر حسب دمای حاصل از لیزر

<table>
<thead>
<tr>
<th>اثرات بیولوژیک</th>
<th>دما (درجه سانتی‌گراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبیعی</td>
<td>۳۷</td>
</tr>
<tr>
<td>هیپرترما</td>
<td>۴۵</td>
</tr>
<tr>
<td>کاهش فعالیت انتروپی و توافت حرکت‌های سلولی</td>
<td>۵۰</td>
</tr>
<tr>
<td>تعیین ماهیت پروتئین کلاژن، انقاد</td>
<td>۶۰</td>
</tr>
<tr>
<td>قابلیت گردیده غشاء</td>
<td>۸۰</td>
</tr>
<tr>
<td>واکنش، کندگی</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>کریستالی شدن</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>دوب</td>
<td>۳۰۰</td>
</tr>
</tbody>
</table>

انواع تأثیرات لیزر بر بافت

برهمکنش فوتو شیمیائی

در این برهمکنش، به طور معقول چگالی توان پایین (برای مثل در حدود \(1 W/cm^2\) و زمان پرتوی \(6\) W/cm\(^2\) طولانیتر از چند ثانیه است و افزایش دمای قابل توجهی در بافت تحت تابش وجود ندارد.

انرژی جذب شده توسط ابرکترونی مولکول‌ها باعث شرکت مولکول در فع آل انفعالات شیمیائی می‌گردد. بافت ناسالم حساس به نور متلاشی می‌شود. امواج کوتاه ماوره بنفش تحد بهین نحو عمل می‌کند و استفاده از این پدیده به دو طریق امکان‌پذیر است:

\(^*\) Phtoradiatin
\(^{†}\) Photoablation
\(^{‡}\) Thermal

\(^{\star}\) Photochemical
به خاطر داشته در نوع تاثیر لیزر بر بافت علاوه بر
فکرکرده گفتند شده، عوامل که تولید و انتقال گرم را
در بافت تحت تاثیر قرار می‌دهند خیز می‌دانند: مانند
خون‌رسانی و سرعت عبور خون از بافت گرم شده.

در رابطه با اثر گرماپایی لیزر باعث گفت که فوتونهای
اشتعال لیزر توسط رنگ دانه‌های بافت جذب و حرکت
امی و مولکول را ریپ می‌شود و این خود منجر به
گرم شدن و ازدیاد درجه حرارت سلول و بافت شده و
به اطراف نیز منتقل می‌شود (۴).

انعقاد

با افزایش دمای بافت به بالاتر از
۴۲ ±۵ درجه اسلوپ، افزایش ویژه روي
تومورهای اولیه و منسانتیک مغز و کید با موافقت
انجام شده است. استفاده از پیده انعقاد در
فوتونکوآگولاسیون بیماران پیشین از جمله جداسازی
شبیکه با به کار بردن لیزر و ضایعات دیابتی با جذب
طول موج‌های آبی و سبز لیزر آرگون به شدت ایجاد
گرما و انعقاد خون و انسداد عروق خونی شبیکه را
موجب می‌گردد.

Laser interstitial therotherapy
Solid

۴ Hyperthermia

Photocoagualation
تیخیر۱

انزی دریافتی بافت به حذف که درون و اطراف سلولی تیخیر می‌گردد و این امر منجر به اهدا و از هم گسیختگی سلول‌ها می‌شود. از سوی دیگر بخار ایجاد شده باعث می‌شود کرماً اضافی انتقال یافته و از هرگونه افزایش دما در بافت مجار جلوگیری شود. گسیختگی بافت به علت افزایش حجم ناشی از تیخیر رخ می‌دهد؛ بیشترین استفاده لیزر، بوزه در جراحی لیزری با استفاده از ین یدیدن رخ می‌دهد. از مزایای این روش قابلیت کاربرد آن است که در ضایعات سطحی، کوتر کردن عروق خونی اطراف پرش و ایجاد زمینه عمل بدون خونریزی می‌باشد. لیزر بهترین وسیله‌ای است که بهین ترتیب عمل می‌کند و در جراحهای دهان و گوش- حلق- بینی ۲ و در برداشت لایه های پر آب دندانی به کار می‌رود.

کربنی شدن۲

زمانی که مولکول‌های آب تیخیر شوند و پروتوهی لیزر همچنان ادامه یابد، روید افزایش حرارت ادامه می‌یابد و در دمای بیش از ۱۰۰⋅0 متر به سوخت املاح و مواد آلی (کربنی شدن) می‌شود؛ که این عمل همراه با

۱ Melting
۲ ENT
۳ Photocarbonization

References:

1. Ionization
2. Photodisruption
3. Ar-Kr-Yag
4. Excimer
A Survey of Effective Factors on Mental Health

A Study on the Physical Properties of Laser and Its Effects on Tissue

Zohdi Aghdam R, Radfar M

Abstract:

Light Amplification by Stimulated Emission of Radiation or LASER is used as a tool for producing a monochromatic light with radiance on a solid unit angle LASER light is convergent with lowest divergence and has high densit-√e ener-gy area units. Physical components of laser include an active material in which alk. inversion process occurred. Light photons that are produced by stimulat-k----n intensifier chamber transfer the space between two mirrors frequently during -bib they have a contact with stimulated atoms or molecules. This process causes i emission and finally the intensity of light increases significantly. Energy, source xx pumps the space ascends the electrons to a higher level of energy Many q showed that laser beam causes many physiological and biochemisterie changes in components, so the light could be absorbed in mitochondria and cell membe after that the reduction process could be activated in cellular respiratory chain. changes in respiratory chain, free radical productions in the cell will increase w has a lot of etTects on cellular procedures. Considering the fact for curing various diseases in ophthalmology, different l have been applied and its contact with different tissues with different irradie creates photochemical, thermal, and ionization which can have different side ef from on the tissue.

Key Word: Laser, Tissue, Interaction

Address: Radiology Department, Paramedical University, Iran.

¹ instructor of Radiology, Paramedical University of Urmia University of Medical Sciences

² Instructor of Nursing and Midwifery Faculty, Urmia University of Medical Sciences