بررسی خواص فیزیکی لیزر و تاثیر آن بر روز بافت

خواص فیزیکی لیزر

واژه‌های کلیدی: لیزر، خواص فیزیکی لیزر، تغییرات بافتی
در فاصله دور بسیار زیاد است. این چگالی توان تقییاً

ثابت در هر دو انتهای باریکه (که بافت مناسب با
عكس مجزا فاصله شدت یک چشمه نقطه‌ای غیر
منسجم نور یا شدت تابش پونده کاملًا منتفی است).
عامل مهمی در حصر بالقوه لیزر محصول می‌شود (1).

همه لیزرها شامل سه قسمت اساسی هستند:

1- یک حرکت نوری با مقدار Q زیاد که یک انتهای آن
به طور کامل و انتهای دیگر آن به طور جزئی باز تابیده
است. در اینجا مفهوم فیزیکی Q همان مفهوم کمیت
است که برای توصیف برخی آرایش‌های مدار در
الکترونیک به کار می‌رود. در اینجا مفهوم کمیت
نسبت انرژی ذخیره شده در یک وسیله خاص با آرایش
مدار را به انرژی تلف شده در واحده زمان به دست
می‌دهد.

\[
Q = \frac{\text{انرژی ذخیره شده}}{\text{زان/انرژی تلف شده}}
\]

2- محیط لیزر: ماده‌ای است که می‌توان آن را با
افزودن از طریق "پیمان" برانگیخت و به حالت شبه
پایدار انتقال داد. محیط لیزری ممکن است به شکل
جامد، مایع، یا گاز باشد. محیط‌های لیزری متدول
مقدمه

از میان پیشرفت‌های برجسته قرن بیستم در علوم و
مهندسی، لیزر به حق منزلتی رفعه به خود اختصاص
داده است. کاربرد وسیع لیزر در علوم و مهندسی ناشی
از ویژگی‌های خاص تابش لیزری مولد نور هم‌دور

است و بر خلاف سایر چشم‌های نور عادی، تابش

است که از درجه بسیار بالایی تکفایی، جهت متدی و
درخشندگی پهنه‌مند می‌باشد. درک صحیح لیزر مستلزم
تسلط بر کواناتومی، نظیره الکتروپنتاکسی و اینک،
اصول طیف‌گزاری و حتی الکترونیک است. بنابراین
کلمه لیزر از حروف اول واردها انگلیسی به معنای
توجه و سیال است برای تولید باریکهایی از "نور" تکننگ
در نواحی مواردی نبش، مرتب و مادون قرمز طیف
الکتروپنتاکسی که در آن همه موجها هم فازند. می‌یابد
باریکه نور با نظر فضایی (به خاطر هم فازی همه
امواج) و زمانی به خاطر یکسانی فرکانس امواج منسجم

همانند در نتیجه این احساس، باریکه‌های داریم که
واگرا این به طور نسبی اندکی و تراکم انرژی در واحد
سطح آن هم در دهانه خروجی لیزر و هم در سر دیگر،

1 Laser: Light Amplification Stimulated emission Radiation
2 Utera
3 Infra Red
فوتون‌هایی از نور عادی گسیل می‌شود. این الکترون‌ها با افتراقی انسوزی به یکی از روش‌های زیر ممکن است برانگیخته شوند و به ترک‌های انسوزی بالاتر روند.

1- جذب انسوزی از فوتون‌ها، نظیر مورد فلورسنتی.

2- جذب انسوزی از ذرات باردار، نظیر مورد رنگ‌های درخشان با مواد فسفرسنا لامپ برتو کاندی

3- گرم‌دان، نظیر مورد لامپ الکترونی معمولی با قطعهای فلزی یا شیشه که تا دمای خیلی زیاد گرم شده است.

4- برخوردار با سایر الکترون‌ها، نظیر مورد لامپ مهتابی یا لام‌نی‌نیون.

5- واکنش مایل‌شان شیمی‌ای گرم‌آزار، نظیر مورد شعله (8).

در نور معمولی، گذار الکترونی به طور گسترده‌ای روی میده و در نتیجه فوتون‌ها ازبین برای یک‌دیگر ندارند. از سوی دیگر، در لیزر الکترونی با "پیماژ" انسوزی، برانگیخته شوند و به حال شبه پاپایدر نسبتاً دراز عمر می‌روند، و در آنجا ان قدر باید می‌مانند تا یک فوتون صادق با ان‌زی دقیقاً مناسب و درست، یک گذار به تری انسوزی پایینتر ولی اگر که در این صورت همه اتم‌های برانگیخته، به طور همزمان فوتون‌های با عبارتند از میله‌های یافتنی، لنردموم- یاک 1- هیلیوم، نئون 3، آرگون 2 و دی اکسید کربن.

3- پم‌کردن یا دم‌ان‌زوزی- چندم ان‌زوزی لازم برای برانگیختن اتم‌های محیطی لیزری ممکن است یک منبع قوی نور باشد که در گستره وسیعی از ان‌زوزها، فوتون‌های گسیل می‌کند و به ضرورت شیار فوتون‌هایی است که با ان‌زوزی کوانتومی، اتم‌های لیزری را برانگیخته می‌کند که چنانچه در مورد لیزر گازی دیده می‌شود، یک چانچه در مورد لیزر گازی دیده می‌شود، یک مولد ولتاژ فرکانسی را در با توجه تقریبی 1000 ولت است که یون‌ها را شتاب می‌دهد و پیوندهای هم به نوبه خود در آن برخوردار با اتم‌های لیزری آنها را برانگیخته می‌کند. در لیزر‌های نیمه رسانی (دیود) با عبور یک جریان الکتریکی بسیار شدید، از مربوط به تا هزار آمپر در هر cm2 از محل اتصال نیمه P-N رسانا در آن ایجاد پم‌بیز می‌کند (5).

کارکرد لیزر

برطبق مدل اتم‌بی، هنگامی که الکترون‌ها از حالات برانگیخته، به یک تری انسوزی پایین می‌روند، برانگیخته اینها یک تری به زیر انسوزی می‌روند.

* Nd - Yag
* He -Ne
* Ar
* Co2
* Boher
انرژی یکسان گسیل می‌کنند انتخابی در نظرهای فتوالکتریک ثابت کردن فوتونی که بزرگی آن به طور دقیق، برابر با انرژی یک الکترون در حالت برنگیخته است، متون تواند الکترون برنگیخته را به حالت پایه برده و بدین ترتیب فوتونی گسیل شود که فرکانس آن با انرژی برنگیختی منجان باشد. نه تنا فراکانس فوتونهای گسیل شده و فوتونهای برنگیزانده یکسان است، بلکه همفزای هم هستند(2).

فعالیت لیزری

در شرایط عادی بیشتر اتم‌ها در هر محیط، در حال پایه هستند. اتم‌ها در اثر حرکت بروند با هم برخورد می‌کنند و در این برخورد دها ممکن است انرژی کافی برای رساندن اتم به یک تراز برنگیخته، رد و بدل شود. از این رو اگر چه بیشتر اتم‌ها در حالت پایه هستند، برخی از آنها ممکن است به یکی از جنگل حالت برنگیخته بروند. رابطه میان تعداد اتم‌ها در هر دو تراز انرژی با معادله بولتزمن(7) نشان داده می‌شود. که در آن N_2 به ترتیب تعداد اتم‌های موجود در ترازهای $K.N_2=\frac{N_1e^{(E2-E1)/KT}}{E_2} \quad E_1$ و E_2

1 Einstein

2 Boltsman
چگالی تنوای چگالی انرژی

چگالی انرژی از نظر ریاضی عبارت است از نسبت کل انرژی تولید شده به وسیله لیزر به سطحی از بافت که مورد تابش قرار گرفته است و با واحد زول بر سانتی‌متر² (J/cm²) بیان می‌شود. همچنین چگالی انرژی از حاصل ضرب چگالی تنوای در زمان به دست می‌آید. چگالی تنوای مستقل از زمان است و عبارت است از توان خروجی لیزر تقسیم بر سطح تابش. فاکتورهای چگالی انرژی و چگالی تنوای هستند که نوع تاپیر لیزر بر بافت را تعیین می‌کند. معنای این یافته آن است که اندازه سطح تابش، تاپیر مهمی در نوع اثر لیزر بر بافت دارد و با تغییر در محاسبات به عنوان فاکتوری مهم در نظر گرفته شود. بدان معنی که در دو لیزر با توان یکسان و در زمان تابش یکسان، چگالی انرژی و توان با سطح مقطع تابش نسبت عکس دارد و به دلیل تفاوت سطح تابش ممکن است این لیزرها اثرات کاملاً مختلفی بر بافت تحت تابش داشته باشند. از آنجا که پرتوهای لیزر با به طبیعت تولید شان همگونی هستند، سطح مقطع تابش در مسافت‌های مختلف از مربع تولید باید ثابت بماند. اما در عمل چنین نیست. همه پرتوهای لیزر مقدار ناجی اما تأثیرگذاری از واقعی را

ثبت می‌ماند و انجام باریکه حفظ می‌شود. وقتی باریکه به انتهای کاملاً باز تابنده بخورده می‌کند. جهت آن مکوسی می‌شود و به گسل الکلی فتون و افزایش شدت آن ادامه می‌دهد تا اینکه، به انتهای دیگر (انهای باز تابنده جدید) می‌رسد. در آنجا برخی از پرتوهای باریکه، خارج می‌شود و بقیه باز می‌ماند و به فرانک گسل الکلی فتون ادامه می‌دهد این عمل لیزری تا وقتی ادامه می‌یابد که برای برآمکشتن اتم‌ها و حفظ وارونی جمیعت انرژی کافی به محیط لیزر بررسد. طول موج این نور با اختلاف میان تراز حالت شبه یکسان و تراز انرژی پایینتر محيط لیزر متناقض است. بازده لیزر فوق العاده کم است. در بیشتر انواع لیزرها کمتر از 100٪ از انرژی پمپ شده به تابش منسجم مفید تبدیل می‌شود (۶).

شکل ۱) فرازیند تشکیل لیزر در ماده فعال یک دستگاه لیزر

1 Irradiance
2 Fluence
دارا هستند که در لیزرهاي مختلف منتفاوت است. اين موضوع به ويژه در مورد لیزرهاي دوبانه، که فاقد آينه های دوه طرف هستند، بيشتر صدق می كند; به اين معنی که سطح مقطع پرتو لیزر در فواصل مختلف خروجی لیزر منتفاوت است. پس چگالی توان و انرژي در موادی که پروپ لیزر به پشت قرار می گیرد فرق می کند. لذا اگر پروپ لیزر به بافت، دور یا نزدیک شود، تأثیر لیزر بر بافت تفاوت خواهد کرد. در بسیاری از موارد کنترل تأثیر لیزر از طریق سطح مقطع بافت، می توان از عددي استفاده نمود.

چنانچه اگر یک عددي همگرا در مسير عددي لیزر قرار داده و فاصله آن را بافت، طوری تنظيم شود که مساوی فاصله گیانوي عددي باشد؛ پرتو لیزر در نقطه گیانوي عددي متمرکز و تأثیر آن پيشتنید خواهد بود. چگالی انرژي که به مفهوم کل انرژي رسیده به بافت، است نوع تأثیر لیزر را تعیین می كند و از كمين ترين مقدار در حدود J/Cm² به جریبک زيست با لیزرهاي کم قدرت به کار می آيد تا پيشترین حد، 1000 J/Cm² که منجر به تور گستختگي می شود متعاقب است. به عبارت دیگر می توان گفت چگالی یکسان تأثیر یکسانی بر یک حجم ثابت از بافت می گذارد. چگالی انرژي صرف نظر از سطح مقطع

\(1 \text{ Photo distortion} \)
تأثیرات لیزر بر بافت
در بافت‌های بیولوژیک فرایند جذب، معمولاً به‌طور
اصولی تأثیر لیزر را شامل می‌شود که به طور اساسی
توسط مولکولهای آب و ماقرو مولکولهای نظر
بروتئینها و پیگمانها (رنگدانه) انجام می‌شود. در حالت
که جذب مادون قرمز طیف الکترومغناطیسی به
مولکولهای آب نسبت داده می‌شود در ناحیه مایزر
بنفشهایی از جذب پروتئینها و پیگمانها جذب بالاتری دارد به

280 nm
ویژه بروتئین‌ها دارای قله قرمز در حدود
هستند. در منحنی یک طیف جذب در جاذبه بیولوژیک
بنیادی بیعی تنگین و هموگلوبین (HbO2) به عنوان
مثال نشان داده شده است. ضریب جذب مالنین از
طول موج‌های مبته به سمت ماوراء بنفشهای
280 nm می‌باشد. قله‌های نسبی جذب هموگلوبین در

نمودار ضریب جذب مالنین- هموگلوبین برحسب نوع طول موج

لیزر

۶٨۰ nm، ۵٤٠ nm، ۴٣۰ nm، ۳٤۰ nm، ۲٠٠ nm
طول موج قطع دیده می‌شود.
از انچیک چه که آب، نه ماکرو مولکولها در ناحیه مادون
قرمز نزدیک (nm) ۳۰۰ -۲۶۰ جذب شدیدی دارند.
در این ناحیه نور با تلفات کمتری به بافت‌های بیولوژیک
نفوذ می‌کند لذا می‌توان با لیزرها در این طول
موج‌ها، در لاپ‌های عمیق بافت، عمل درمانی لیزر را
انجام داد. زمانی که نور لیزر به بافت می‌رسد، مانند
برخوردار هر تابش الکترومغناطیسی به ماده، ممکن است
دچار بازتاب و شکست، جذب و پراکنگی شود و یا در
نهايت از آن هرگونه. اینکه در برخورد لیزر و بافت
کدام انتقال خصوصی تا مشترک به ویژگی‌های نور لیزر
(پرتوه طول موج، چگالی توان) و نیز ویژگی‌های بافت
(ضریب جذب، ضریب شکست، پرآکلندگی) دارد. در
نهايت برخورد تابش لیزر با بافت انسانی به طول
موج و شدت این تابش بستگی دارد (۲).

\begin{equation}
\text{نمودار ضریب جذب مالنین- هموگلوبین برحسب نوع طول موج لیزر}
\end{equation}
الف- تشغیل نوری: با تابش نور قرمز (λ = 630 nm) لیزر به سطح های سرطانی که توسط مشتقات هماتوپورفرین حساس شده و اجید و واکنش و تخریب درون تومور نموده و آن را متلاشی می‌سازد.

ب- قدرت اجید نور: تابش بر اثر زرى ماوراء بیش، باندهای بین مولکول را شکسته و ذرات مولکولی را تبخر می‌کند و بررسی دقیقه از نظر وسعت و عمق حاصل می‌شود.

برهمکش گرمایی

لین واکنش شامل کلیه آثاری که افراشی دمای موضع تابش، مهمترین پارامتر مگه در آن می‌باشد.

برهمکش گرمایی مهمترین زمینه کاربرد لیزرهای پیشکشی را تشکیل می‌دهد که به‌طوری استفاده را در این زمینه بی‌پایه در جراحی لیزری دارد. جگالی توان منجر به این بی‌پایه در محدوده 6 تا 10 S/W/cm² و زمان تابش 1/16 ثانیه عمل می‌کند. همان طور که از جدول 1 (1) یید است، تغییرات دما بسته به میزان آن اثرات بسیار بی‌پایه، تبخر، ذوب و کریستال شدن را در بافت تحت تابش ایجاد می‌کند که این اثرات به طور خلاصه مورد بررسی قرار می‌گیرند. با این

جدول شماره ۱ افراد پپسولوکی لیزر بر بافت بر حسب

<table>
<thead>
<tr>
<th>دمای حاصل از لیزر</th>
<th>دما (درجه سانتی‌گراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبیعی</td>
<td>67</td>
</tr>
<tr>
<td>هیپر ترمیا</td>
<td>45</td>
</tr>
<tr>
<td>کاهش فعالیت انتزای‌ها و توقف حرکت‌های سلولی</td>
<td>50</td>
</tr>
<tr>
<td>تغییر ماهیت پروتئین‌ها، انعقاد</td>
<td>60</td>
</tr>
<tr>
<td>قابلیت گردنه غشاء</td>
<td>80</td>
</tr>
<tr>
<td>تبخر، کندگی</td>
<td>100</td>
</tr>
<tr>
<td>کربنی شدن</td>
<td>150</td>
</tr>
<tr>
<td>دوب</td>
<td>300</td>
</tr>
</tbody>
</table>

انواع تأثیرات لیزر بر بافت

برهمکش فوتو شیمیایی

در این برهمکش، به طور معمول چگالی توان پایین (برای مثال در حدود 1 W/cm² و زمان پرتوهای طولانی) از جنین تهیه است و افراد دمای قابل توجهی در بافت تحت تابش وجود ندارد.

انرژی جذب شده توسط ابرکترون مولکول‌ها باعث شرکت مولکول در فصل و انفعالات شیمیایی می‌گردد. بافت ناسالم حساس به نور متلاشی می‌شود، امواج کوتاه ماوراء نبض به‌سیب نحو عمل می‌کند و استفاده از این بدنه به دو طریق امکان‌پذیر است:

* Phtoradiatin
* Photoablation
* Thermal

* Photochemical
در نتیجه پی در پی سلول‌ها کمتر می‌شود. در نهایت در دمای C°, تغییر ماهیت بروتونین‌ها و کلاژن اتفاق می‌افتد. اگر دمای C°، بافت به طور غیر قابل برگشت منعطف می‌شود. تذکر این نکته لازم است، هنگامی که دمای مواد تابش در حد انعقاد قرار دارد، بافت اطراف آن در حال هپیرترمی است و بازگشت آسیب‌های وارد شده به بافت اطراف به مدت زمان هپیرترمی تحمل شده و وزن‌گی بافت بستگی دارد. از هپیرترمی و انعقاد در (گرما درمانی میان لیزری)، برای تابوی تومور‌های تورب استفاده می‌شود. این روش که به‌طور معمول با لیزر تنومدرم-یا صورت می‌گردد، تاکنون به وزه روي تومور‌های اولیه و منساناتیک مغز و کبد، به موفقیت انجام شده است. استفاده از بدنه انعقاد در فوتوداکتورکلسیون بیماری‌های شیکیه از جمله جناشک‌گی شیکیه، با یه کار بردن لیزر و ضایعات دیابتی با جذب طول موج‌های آبی و سنی لیزر آرگون به شدت ایجاد گرما و انعقاد خون و انسداد عروق خونی شیکیه را موجب می‌گردد.

* Laser interstitial thermo therapy
* Photocoagulation
* Hyperthermia

به خاطر داشته که نوع تاثیر لیزر بر بافت علاوه بر فاکتورهای گفته شده، عوامل که تولید و انتقال گرما را در بافت تحت تاثیر قرار می‌دهند نیز مورد نظر مانند خونرسانی و سرعت عبور خون از بافت گرم شده.

در رابطه با اثر گرما پایین لیزر، باز هم گفته که فوتونهای اشعه لیزر توسعه رنگ دانه‌های بافت جذب و حرکت اتمی و مولکول را سبب می‌شود و این خود منجر به گرم شدن و ازدیاد حرارت سلول و بافت شده و به اطراف نیز منتقل می‌شود (۴).

انعقاد

با افزایش دمای بافت به بالاتر از $37 ^\circ$ فراوری آغاز می‌شود که در اثر بالا رفتن دما در بافت، انعقاد و تغییر شکل مولکولی بروتونین‌ها و شکستگی انتقال آن ایجاد می‌گردد. که به آن هپیرترمی گفته می‌شود. در حدود دمای C°، ۴ ساختمان مولکول‌های برگ دگرگون می‌شود در صورتیکه آن اثر، مدتی به طول می‌انجامد. بازگشت آنها به حالت طبیعی نا ممکن خواهد بود. در دمای بیش از $50 ^\circ$، بازگشت آنها به حالت طبیعی نا ممکن خواهد بود. در $50 ^\circ$ تا حدود $60 ^\circ$، انفعالات آنزیمی سلول‌ها کم می‌شود که منجر به کاهش فرآیند انتقال انرژی درون سلول و عدم تحرک سلولی می‌شود.

* Laser interstitial thermo therapy
* Photocoagulation
* Hyperthermia

Downloaded from umfm.umsu.ac.ir at 13:57 +0330 on Tuesday November 26th 2019
تبخیر

انزی دریافتی بافت به حجم است که درون و اطراف سلولی تبخیر می‌گردد و این امر منجر به اهدا و از هم گسیختن سلول‌ها می‌شود. از سوی دیگر بخار ایجاد شده باعث می‌شود گرمایی اضافی انتقال یافته و از هرگونه افزایش دما در بافت مجاور جلوگیری شود.

گسیختگی بافت به عمل افت‌این حجم ناشی از تبخیر رخ می‌دهد؛ بیشترین استفاده لیزر، پویه در جراحی لیزری با استفاده از یکیده رخ می‌دهد. از مزایای این روش قابلیت کاربرد آن است که در ضایعات سطحی، کوتر کردن عروق خونی اطراف برش و ایجاد زمنه عمل بدون خونریزی می‌باشد. لیزر به‌خیال و سیله‌ای است که به‌دين ترتب عمل می‌کند و در جراحی‌های دهان و گوش- حلق- بینی ۳ و در برداشت‌لا از یاپ آب دندانی به کار می‌رود.

کربنی شدن

زمینه‌ی مولکول‌های آب تبخیر شوند و پرتوهی لیزر همچنان ادامه یافته و در افزایش حرارت ادامه می‌یابد؛ در دمای بیش از C ۱۰۰ درجه‌ی به سوختن املاح و مواد آلی (کربنی شدن) می‌شود که این عمل همراه با

1. Melting
2. ذوب
3. کربنی شدن
4. Vaporization
5. ENT
6. Photocarbonization

References:

1. Ionization
2. Photodisruption
3. Ar-Kr-Yag
4. Excimer
A Survey of Effective Factors on Mental Health

A Study on the Physical Properties of Laser
and Its Effects on Tissue

Zohdi Aghdam R, Radfar M

Abstract:

Light Amplification by Stimulated Emission of Radiation or LASER is used as a tool for producing a monochromatic light with radiance on a solid unit angle LASER light is convergent with lowest divergence and has had high densit-v ener-gy area units. Physical components of laser include an active material in which alk. inversion process occurred. Light photons that are produced by stimulat-n intensifier chamber transfer the space between two mirrors frequently during -bib they have a contact with stimulated atoms or molecules. This process causes i i emission and finally the intensity of light increases significantly. Energy, source xx pumps the space ascends the electrons to a higher level of energy Many qshowed that laser beam causes many physiological and biochemisterie changes in components, so the light could be absorbed in mitochondria and cell membe after that the reduction process could be activated in cellular respiratory chain. changes in respiratory chain, free radical productions in the cell will increase has a lot of efTects on cellular procedures. Considering the fact for curing various diseases in ophthalmology, different lhave been applied and its contact with different tissues with different irrad creates photochemical, thermal, and ionization which can have different side efrom on the tissue.

Key Word: Laser, Tissue, Interaction

Address: Radiology Department, Paramedical University, Iran.

' instructor of Radiology, Paramedical University of Urmia University of Medical Sciences

' Instructor of Nursing and Midwifery Faculty, Urmia University of Medical Sciences