دوره 22، شماره 4 - ( تیر 1403 )                   جلد 22 شماره 4 صفحات 324-309 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi V, Hoseini A. THE ROLE AND FUNCTION OF NATURAL KILLER T (NKT) CELLS IN NORMAL PREGNANCY AND PREECLAMPSIA: A NARRATIVE REVIEW STUDY. Nursing and Midwifery Journal 2024; 22 (4) :309-324
URL: http://unmf.umsu.ac.ir/article-1-5144-fa.html
هاشمی ویدا، حسینی آرزو. نقش و عملکرد سلول‌های کشنده طبیعی (T NKT Cells) در بارداری نرمال و پره اکلامپسی: یک مطالعه مرور روایتی. مجله پرستاری و مامایی. 1403; 22 (4) :309-324

URL: http://unmf.umsu.ac.ir/article-1-5144-fa.html


1- گروه علوم آزمایشگاهی و بیوتکنولوژی، دانشگاه علوم پزشکی مراغه، مراغه، ایران
2- مرکز تحقیقات سالید تومور، دانشگاه علوم پزشکی ارومیه، ارومیه، ایران (نویسنده مسئول) ، hosseiniare@yahoo.com
چکیده:   (572 مشاهده)
پیش‌زمینه و هدف: پره اکلامپسی (PE[1]) شایع‌ترین اختلال فشارخون بالا بعد از هفته 20 بارداری است و عوارض و آسیب‌های مرتبط با آن، به‌عنوان علت اصلی مرگ‌و‌میر مادر و جنین شناخته می‌شود. تغییرات در سیستم ایمنی در بیماری‌زایی PE نقش به سزایی دارد، سلول‌های کشنده طبیعی T NKT-cells[2]))، به‌عنوان فراوان‌ترین لکوسیت در طول بارداری، توسط هورمون‌های تخمدانی در دسیدوا جذب و فعال می‌شوند، شواهد اخیر از این ایده حمایت می‌کند که سلول‌های NKT با پروفایل‌های رونویسی و سیتوکین منحصربه‌فرد به‌عنوان واسطه بین سیستم ایمنی ذاتی و ایمنی اختصاصی عمل می‌نمایند و نقش محوری در بارداری ایفا می‌نمایند. بنابراین هدف از این مطالعه، مروری بر تعداد، فنوتیپ، تغییرات و فعالیت عملکردی سلول‌های NKT را در بارداری طبیعی و پره اکلامپسی بود.
مواد و روش کار: این مطالعه یک مرور روایی است که از پایگاه اطلاعات PubMed-Medline و Embase برای جستجو در نقش سلول‌های NKT در بارداری و پره اکلامپسی استفاده نمود. داده‌ها از جستجو و استخراج مقاله‌ها به دست آمد.
یافته‌ها: نتایج مطالعات مختلف نشان داد که تعداد سلول‌های NKT در پره اکلامپسی در مقایسه بارداری نرمال با به‌طور قابل‌توجهی افزایش می‌یابد. بااین‌حال، هیچ تفاوت قابل‌توجهی در تعداد و فنوتیپ سلول‌های iNKT[3] در بارداری طبیعی و پره اکلامپسی وجود ندارد. بااین‌حال، کاهش جزئی در[4] IFN-γ ترشح‌شده از سلول iNKT در زنان باردار در مقایسه با بیماران پره اکلامپسی نشان دادند.
بحث و نتیجه‌گیری: سلول‌های NKT با ترشح اینترلوکین-4[5] و اینترفرون-γ در تنظیم تعادل پاسخ‌های Th1[6] و Th2 نقش دارند. در طول بارداری، ایمنی مادر نسبت به تولید سیتوکین تیپ دو جهت مهار عملکرد سیتوکین‌های تیپ یک که می‌تواند برای جنین در حال رشد مضر باشد، سوگیری دارد. بااین‌حال، این سوگیری به سیتوکین‌های تیپ دو در بارداری نرمال رخ می‌دهد.
 
[1] Preeclampsia
[2] Natural killer T (NKTcells
[3] Invariant natural killer T (iNKTcells
[4] Interferon gamma
[5] IL-4
[6] T helper
متن کامل [PDF 554 kb]   (304 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: مامایی

فهرست منابع
1. García JL, Heckman JJ, Ziff AL. Gender differences in the benefits of an influential early childhood program. Eur Econ Rev 2018;109:9-22. [PMID: 30410186] [DOI:10.1016/j.euroecorev.2018.06.009] [PMCID: PMC6217989]
2. Dekker G, Robillard P-Y. Pre-eclampsia: Is the immune maladaptation hypothesis still standing? An epidemiological update. J Reprod Immunol 2007;76(1-2):8-16. [PMID: 17493684] [DOI:10.1016/j.jri.2007.03.015]
3. Hosseini A, Dolati S, Hashemi V, Abdollahpour-Alitappeh M, Yousefi M. Regulatory T and T helper 17 cells: Their roles in preeclampsia. J Cell Physiol 2018;233(9):6561-73. [PMID: 29663372] [DOI:10.1002/jcp.26604]
4. Sharma S, Norris WE, Kalkunte S. Beyond the threshold: an etiological bridge between hypoxia and immunity in preeclampsia. J Reprod Immunol 2010;85(1):112-6. [PMID: 20236707] [DOI:10.1016/j.jri.2010.01.002] [PMCID: PMC3621111]
5. Espinoza J, Vidaeff A, Pettker CM, Simhan H. ACOG practice bulletin no. 202: gestational hypertension and preeclampsia. Obstet Gynecol 2019;133(1):e1-25. [PMID: 30575675] [DOI: 10.1097/AOG.0000000000003020]
6. Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol Apects Med 2007;28(2):192-209. [PMID: 17433431] [DOI:10.1016/j.mam.2007.02.006]
7. Bueno-Sánchez JC, Agudelo-Jaramillo B, Escobar-Aguilerae LF, Lopera A, Cadavid-Jaramillo AP, Chaouat G, et al. Cytokine production by non-stimulated peripheral blood NK cells and lymphocytes in early-onset severe pre-eclampsia without HELLP. J Reprod Immunol 2013;97(2):223-31. [PMID: 23415844] [DOI:10.1016/j.jri.2012.11.007]
8. . Cérbulo-Vázquez A, Anaya-Herrera J, Flores-Cánovas Y, Briones-Vega CG, Zavala-Barrios B, Carrillo-Esper R, et al. Aspectos inmunológicos en preeclampsia. Revista Facultad Medicina 2023;66(5):7-23. [URL:] [DOI:10.22201/fm.24484865e.2023.66.5.02]
9. Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, Gomez-Lopez N. Cellular immune responses in the pathophysiology of preeclampsia. J Leukocyte Biol 2022;111(1):237-60. [PMID: 33847419] [DOI:10.1002/JLB.5RU1120-787RR] [PMCID: PMC8511357]
10. Ahn H, Park J, Gilman-Sachs A, Kwak-Kim J. Immunologic characteristics of preeclampsia, a comprehensive review: Immunologic characteristics of preeclampsia. Am J Reprod Immunol 2011;65(4):377-94. [PMID: 20825381] [DOI:10.1111/j.1600-0897.2010.00913.x]
11. Miko E, Szereday L, Barakonyi A, Jarkovich A, Varga P, Szekeres-Bartho J. The role of invariant NKT cells in pre-eclampsia: Invariant nkt cells in pre-eclamptic patients. Am J Reprod Immunol 2008;60(2):118-26. [PMID: 18573130] [DOI:10.1111/j.1600-0897.2008.00603.x]
12. Teige A, Bockermann R, Hasan M, Olofsson KE, Liu Y, Issazadeh-Navikas S. CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses. J Immunol 2010;185(1):345-56. [PMID: 20525883] [DOI:10.4049/jimmunol.0901693]
13. Emoto M. α-galactosylceramide promotes killing of Listeria monocytogenes within the macrophage phagosome through invariant NKT-cell activation. Infect Immun 2010;78:2667-76. [PMID: 20351146] [DOI:10.1128/IAI.01441-09] [PMCID: PMC2876567]
14. Onoé K, Yanagawa Y, Minami K, Iijima N, Iwabuchi K. Th1 or Th2 balance regulated by interaction between dendritic cells and NKT cells. Immunol Res 2007;38(1-3):319-32. [PMID: 17917039] [DOI:10.1007/s12026-007-0011-5]
15. Elagab EAM, Alshahrani M, Elbadawi AAA, Aedh AI, Osman AM, Osman HM. Decidual natural killer cells are essential for a successful pregnancy (review). Adv Reprod Sci 2022;10(03):73-90. [URL:] [DOI:10.4236/arsci.2022.103008]
16. Altman JB, Benavides AD, Das R, Bassiri H. Antitumor responses of invariant natural killer T cells. J Immunol Res 2015;2015:652875. [PMID: 26543874] [DOI:10.1155/2015/652875] [PMCID: PMC4620262]
17. Taniguchi M, Nakayama T. Recognition and function of Vα14 NKT cells. Inseminars Immunology 2000;12(6):543-50. [PMID: 11145860] [DOI:10.1006/smim.2000.0270]
18. Kumar V. NKT-cell subsets: promoters and protectors in inflammatory liver disease. J Hepatol 2013;59(3):618-20. [PMID: 23669283] [DOI:10.1016/j.jhep.2013.02.032] [PMCID: PMC4086465]
19. Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 2011;343(1):43-55. [MID: 20734065] [DOI:10.1007/s00441-010-1023-3] [PMCID: PMC3616393]
20. Boyson JE, Rybalov B, Koopman LA, Exley M, Balk SP, Racke FK, et al. CD1d and invariant NKT cells at the human maternal-fetal interface. Proc Natl Acad Sci U S A 2002;99(21):13741-6. [PMID: 12368486] [DOI:10.1073/pnas.162491699] [PMCID: PMC129762]
21. Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI. Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 2012;12(12):845-57. [PMID: 23154222] [DOI:10.1038/nri3328] [PMCID: PMC3740582]
22. Chan WL, Pejnovic N, Liew TV, Lee CA, Groves R, Hamilton H. NKT cell subsets in infection and inflammation. Immunol Lett 2003;85(2):159-63. [PMID: 12527223] [DOI:10.1016/S0165-2478(02)00223-7]
23. Macho-Fernandez E, Brigl M. The extended family of CD1d-restricted NKT cells: Sifting through a mixed bag of TCRs, antigens, and functions. Front Immunol 2015;6:362. [PMID: 26284062] [DOI:10.3389/fimmu.2015.00362] [PMCID: PMC4517383]
24. Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 2003;171(10):5140-7. [PMID: 14607913] [DOI:10.4049/jimmunol.171.10.5140]
25. Galli G, Nuti S, Tavarini S, Galli-Stampino L, De Lalla C, Casorati G, et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med 2003;197(8):1051-7. [PMID: 12695492] [DOI:10.1084/jem.20021616] [PMCID: PMC2193881]
26. Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013;13(2):101-17. [PMID: 23334244] [DOI:10.1038/nri3369]
27. Buechel HM, Stradner MH, D'Cruz LM. Stages versus subsets: Invariant Natural Killer T cell lineage differentiation. Cytokine 2015;72(2):204-9. [PMID: 25648290] [DOI:10.1016/j.cyto.2014.12.005] [PMCID: PMC4864435]
28. Kim EY, Lynch L, Brennan PJ, Cohen NR, Brenner MB. The transcriptional programs of iNKT cells. in Seminars in immunology. 2015. Elsevier. [PMID: 25841627] [DOI:10.1016/j.smim.2015.02.005] [PMCID: PMC6322908]
29. Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2015;38(6):470-83. [PMID: 27013447] [DOI:10.1016/j.bj.2016.01.003] [PMCID: PMC6138764]
30. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of i NKT cells. Nature immunology, 2013. 14(11): p. 1146-1154. [PMID: 24097110] [DOI:10.1038/ni.2731] [PMCID: PMC3824254]
31. Watarai H, Sekine-Kondo E, Shigeura T, Motomura Y, Yasuda T, Satoh R, et al., Development and function of invariant natural killer T cells producing Th2-and Th17-cytokines. PLoS Biol 2012;10(2):e1001255. [PMID: 22346732] [DOI:10.1371/journal.pbio.1001255] [PMCID: PMC3274505]
32. Terashima A, Watarai H, Inoue S, Sekine E, Nakagawa R, Hase K, et al. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 2008;205(12):2727-33. [PMID: 19015310] [DOI:10.1084/jem.20080698]
33. . Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS,et al., Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4− NK1. 1− NKT cell population. Proc Natl Acad Sci U S A 2008;105(32):11287-92. [PMID: 18685112] [DOI:10.1073/pnas.0801631105] [PMCID: PMC2516267]
34. Lang GA, Amadou Amani S, Quinn JL, Axtell RC, Lang ML. Immunization-expanded NKT follicular helper cells drive IgG1 isotype switch against an exogenous T-independent polysaccharide but do not promote recall responses. Immuno Horizons 2019;3(3):88-93. [PMID: 31342012] [DOI:10.4049/immunohorizons.1800081] [PMCID: PMC6655531]
35. Chang P-P, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 2011;13(1):35-43. [PMID: 22120117] [DOI:10.1038/ni.2166]
36. Verykokakis M, Krishnamoorthy V, Iavarone A, Lasorella A, Sigvardsson M, Kee BL. Essential functions for ID proteins at multiple checkpoints in invariant NKT cell development. J Immunol 2013;191(12):5973-83. [PMID: 24244015] [DOI:10.4049/jimmunol.1301521] [PMCID: PMC3864619]
37. Wu H, Shao Q. The role of inhibitor of binding or differentiation 2 in the development and differentiation of immune cells. Immunobiol 2019;224(1):142-6. [PMID: 30340915] [DOI:10.1016/j.imbio.2018.09.006]
38. King IL, Fortier A, Tighe M, Dibble J, Watts GFM, Veerapen N, et al. Invariant natural killer T cells direct cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 2011;13(1):44-50. [PMID: 22120118] [DOI:10.1038/ni.2172] [PMCID: PMC3833037]
39. Hashemi V, Maleki LA, Esmaily M, Masjedi A, Ghalamfarsa G, Namdar A, et al. Regulatory T cells in breast cancer as a potent anti-cancer therapeutic target. Int Immunopharmacol 2020;78(106087):106087. [PMID: 31841758] [DOI:10.1016/j.intimp.2019.106087]
40. Hashemi V, Farrokhi AS, Tanomand A, Babaloo Z, Hojjat-Farsangi M, Anvari E, et al. Polymorphism of Foxp3 gene affects the frequency of regulatory T cells and disease activity in patients with rheumatoid arthritis in Iranian population. Immunol Lett 2018;204:16-22. [PMID: 30292536] [DOI:10.1016/j.imlet.2018.10.001]
41. Grover P, Goel PN, Greene MI. Regulatory T cells: Regulation of identity and function. Front Immunol 2021;12:750542. [PMID: 34675933] [DOI:10.3389/fimmu.2021.750542] [PMCID: PMC8524049]
42. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 2014;124(9):3725-40 [PMID: 25061873] [DOI:10.1172/JCI72308] [PMCID: PMC4151203]
43. Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 2020;80(106221):106221. [PMID: 32007707] [DOI:10.1016/j.intimp.2020.106221]
44. Fox L, Hegde S, Gumperz JE. Natural killer T cells: innate lymphocytes positioned as a bridge between acute and chronic inflammation? Microbes Infect 2010;12(14-15):1125-33. [PMID: 20850561] [DOI:10.1016/j.micinf.2010.08.011] [PMCID: PMC2998565]
45. Monteiro M, Almeida CF, Caridade M, Ribot JC, Duarte J, Agua-Doce A, et al. Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-β. J Immunol 2010;185(4):2157-63. [PMID: 20639482] [DOI:10.4049/jimmunol.1000359]
46. Rezayi M, Hosseini A. Structure of PD1 and its mechanism in the treatment of autoimmune diseases. Cell Biochem Funct 2023;41(7):726-37 [PMID: 37475518] [DOI:10.1002/cbf.3827]
47. Moreira-Teixeira L, Resende M, Devergne O, Herbeuval J-P, Hermine O, Schneider E, et al. Rapamycin combined with TGF-β converts human invariant NKT cells into suppressive Foxp3+ regulatory cells. J Immunol 2012;188(2):624-31. [PMID: 22156591] [DOI:10.4049/jimmunol.1102281]
48. Krízan J, Cuchalová L, Síma P, Králícková M, Madar J, Vĕtvicka V. Altered distribution of NK and NKT cells in follicular fluid is associated with IVF outcome. J Reprod Immunol 2009;82(1):84-8. [PMID: 19682753] [DOI:10.1016/j.jri.2009.05.005]
49. Tsuda H, Sakai M, Michimata T, Tanebe K, Hayakawa S, Saito S. Characterization of NKT cells in human peripheral blood and decidual lymphocytes. Am J Reprod Immunol 2001;45(5):295-302. [PMID: 11432404] [DOI:10.1111/j.8755-8920.2001.450505.x]
50. Taylor EB, Sasser JM. Natural killer cells and T lymphocytes in pregnancy and pre-eclampsia. Clin Sci 2017;131(24):2911-7. [PMID: 29222389] [DOI:10.1042/CS20171070]
51. Ntrivalas EI, Bowser CR, Kwak-Kim J, Beaman KD, Gilman-Sachs A. Expression of killer immunoglobulin-like receptors on peripheral blood NK cell subsets of women with recurrent spontaneous abortions or implantation failures: Kirs on nk cells of women with rsa or infertility. Am J Reprod Immunol 2005;53(5):215-21. [PMID: 15833099] [DOI:10.1111/j.1600-0897.2005.00268.x]
52. Werner JM, Damian M, Farkas SA, Schlitt HJ, Geissler EK, Hornung M. Murine DX5+NKT Cells Display Their Cytotoxic and Proapoptotic Potentials against Colitis-Inducing CD4+CD62Lhigh T Cells through Fas Ligand. J Immunol Res 2018;2018:8175810. [PMID: 30364054] [DOI:10.1155/2018/8175810] [PMCID: PMC6186349]
53. Ryan JC, Niemi EC, Nakamura MC, Seaman WE. NKR-P1A is a target-specific receptor that activates natural killer cell cytotoxicity. J Exp Med 1995;181(5):1911-5. [PMID: 7722466] [DOI:10.1084/jem.181.5.1911] [PMCID: PMC2191987]
54. Lee PT, Benlagha K, Teyton L, Bendelac A. Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med 2002;195(5):637-41. [PMID: 11877486] [DOI:10.1084/jem.20011908] [PMCID: PMC2193771]
55. Van Den Heuvel MJ, Peralta CG, Hatta K, Han VK, Clark DA. Decline in number of elevated blood CD3+ CD56+ NKT cells in response to intravenous immunoglobulin treatment correlates with successful pregnancy. Am J Reprod Immunol 2007;58(5):447-59. [PMID: 17922698] [DOI:10.1111/j.1600-0897.2007.00529.x]
56. Southcombe J, Redman C, Sargent I. Peripheral blood invariant natural killer T cells throughout pregnancy and in preeclamptic women. J Reprod Immunol 2010;87(1-2):52-9. [PMID: 20850184] [DOI:10.1016/j.jri.2010.07.003] [PMCID: PMC2995212]
57. Gorczynski RM, Hadidi S, Yu G, Clark DA. The same immunoregulatory molecules contribute to successful pregnancy and transplantation: Molecules regulating graft rejection stop abortion. Am J Reprod Immunol 2002;48(1):18-26. [PMID: 12322892] [DOI:10.1034/j.1600-0897.2002.01094.x]
58. Borzychowski AM, Croy BA, Chan WL, Redman CWG, Sargent IL. Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells. Eur J Immunol 2005;35(10):3054-63. [PMID: 16134082] [DOI:10.1002/eji.200425929]
59. Loza MJ, Metelitsa LS, Perussia B. NKT and T cells: coordinate regulation of NK-like phenotype and cytokine production. Eur J Immunol 2002;32(12):3453-62. https://doi.org/10.1002/1521-4141(200212)32:12<3453::AID-IMMU3453>3.0.CO;2-D https://doi.org/10.1002/1521-4141(200212)32:12<3453::AID-IMMU3453>3.0.CO;2-D [PMID: 12442327] [DOI:10.1002/1521-4141(200212)32:123.0.CO;2-D]
60. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299(5609):1057-61. [PMID: 12522256] [DOI:10.1126/science.1079490]
61. Saito S, Tsukaguchi N, Hasegawa T, Michimata T, Tsuda H, Narita N. Distribution of Th1, Th2, and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. Am J Reprod Immunol 1999;42(4):240-5. [PMID: 10580606] [DOI:10.1111/j.1600-0897.1999.tb00097.x]
62. Manchorova D, Papadopoulou M, Alexandrova M, Dimitrova V, Djerov L, Zapryanova S, et al. Human decidual gamma/delta T cells possess unique effector and TCR repertoire profiles during pregnancy. Cell Immunol 2022;382:104634. [PMID: 36308817] [DOI:10.1016/j.cellimm.2022.104634]
63. Li L-P, Fang Y-C, Dong G-F, Lin Y, Saito S. Depletion of invariant NKT cells reduces inflammation-induced preterm delivery in mice. J Immunol 2012;188(9):4681-9. [PMID: 22467647] [DOI:10.4049/jimmunol.1102628]
64. Shojaei Z, Jafarpour R, Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Motallebnezhad M. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: A comprehensive review and update. Pathol Res Pract 2022;238(154062):154062. [PMID: 35987030] [DOI:10.1016/j.prp.2022.154062]
65. Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N, et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci U S A 2007;104(51):20490-5. [PMID: 18077358] [DOI:10.1073/pnas.0710145104] [PMCID: PMC2154458]
66. McCracken SA, Hadfield K, Rahimi Z, Gallery ED, Morris JM. NF‐κB‐regulated suppression of T‐bet in T cells represses Th1 immune responses in pregnancy. Eur J Immunol 2007;37(5):1386-96. [PMID: 17407192] [DOI:10.1002/eji.200636322]
67. Zhou J, Zhao X, Wang Z, Wang J, Sun H, Hu Y. High circulating CD3+CD56+CD16+ natural killer-like T cell levels predict a better IVF treatment outcome. J Reprod Immunol 2013;97(2):197-203. [PMID: 23452704] [DOI:10.1016/j.jri.2012.12.006]
68. Chan WL, Pejnovic N, Lee CA, Al-Ali NA. Human IL-18 receptor and ST2L are stable and selective markers for the respective type 1 and type 2 circulating lymphocytes. J Immunol 2001;167(3):1238-44. [PMID: 11466339] [DOI:10.4049/jimmunol.167.3.1238]
69. Xu D, Chan WL, Leung BP, Huang FP, Wheeler R, Piedrafita D, et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med 1998;187(5):787-94. [PMID: 9480988] [DOI:10.1084/jem.187.5.787]
70. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 2001;19(1):423-74. [PMID: 11244043] [DOI:10.1146/annurev.immunol.19.1.423]
71. Ida A, Tsuji Y, Muranaka J, Kanazawa R, Nakata Y, Adachi S, et al. IL-18 in pregnancy; the elevation of IL-18 in maternal peripheral blood during labour and complicated pregnancies. J Reprod Immunol 2000;47(1):65-74. [PMID: 10779591] [DOI:10.1016/S0165-0378(00)00058-9]
72. Sacks GP, Redman CWG, Sargent IL. Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells: Enhanced monocyte IL-12 production in pregnancy. Clin Exp Immunol 2003;131(3):490-7. [PMID: 12605703] [DOI:10.1046/j.1365-2249.2003.02082.x] [PMCID: PMC1808641]
73. Mansouri R, Akbari F, Vodjgani M, Mahboudi F, Kalantar F, Mirahmadian M. Serum cytokines profiles in Iranian patients with preeclampsia. Iran J Immunol 2007;4(3):179-85. [PMID: 17767018] [URL:]
74. Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol Aspects Med 2007;28(2):192-209. [PMID: 17433431] [DOI:10.1016/j.mam.2007.02.006]
75. Azizieh F, Raghupathy R, Makhseed M. Maternal cytokine production patterns in women with pre-eclampsia: Cytokine patterns in pre-eclampsia. Am J Reprod Immunol 2005;54(1):30-7. [PMID: 15948770] [DOI:10.1111/j.1600-0897.2005.00278.x]
76. Germain AM, Romanik MC, Guerra I, Solari S, Reyes MS, Johnson RJ, et al. Endothelial dysfunction: A link among preeclampsia, recurrent pregnancy loss, and future cardiovascular events? Hypertension 2007;49(1):90-5. [PMID: 17116761] [DOI:10.1161/01.HYP.0000251522.18094.d4]
77. Miko E, Barakonyi A, Meggyes M, Szereday L. The role of type I and type II NKT cells in materno-fetal immunity. Biomedicines 2021;9(12):1901. [PMID: 34944717] [DOI:10.3390/biomedicines9121901] [PMCID: PMC8698984]
78. Adams KM, Mandel LS, Guthrie KA, Atkinson MW. Interleukin-18 in the plasma of women with preeclampsia. Am J Obstet Gynecol 2003;188(5):1234-7. [PMID: 12748489] [DOI:10.1067/mob.2003.349]
79. Sakai M, Shiozaki A, Sasaki Y, Yoneda S, Saito S. The ratio of interleukin (IL)-18 to IL-12 secreted by peripheral blood mononuclear cells is increased in normal pregnant subjects and decreased in pre-eclamptic patients. J Reprod Immunol 2004;61(2):133-43. [PMID: 15063636] [DOI:10.1016/j.jri.2004.01.001]
80. Sargent IL, Borzychowski AM, Redman CWG. NK cells and human pregnancy - an inflammatory view. Trends Immunol 2006;27(9):399-404. [PMID: 16843067] [DOI:10.1016/j.it.2006.06.009]
81. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 2001;167(6):3114-22. [PMID: 11544296] [DOI:10.4049/jimmunol.167.6.3114]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پرستاری و مامایی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Nursing And Midwifery Journal

Designed & Developed by : Yektaweb